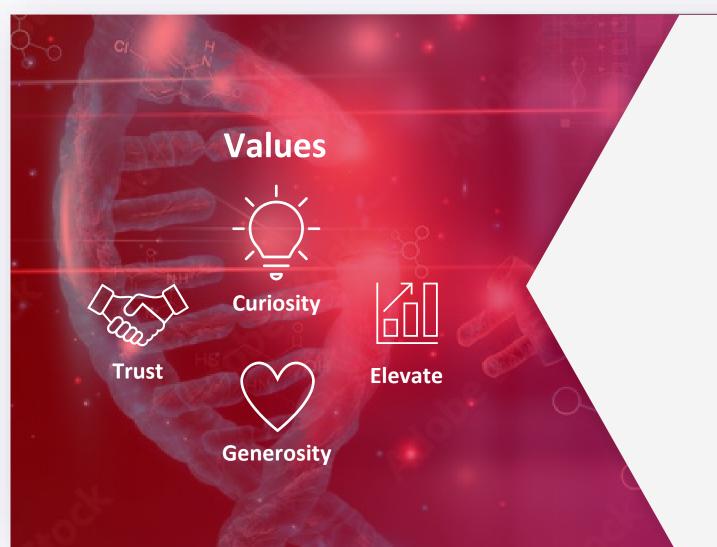


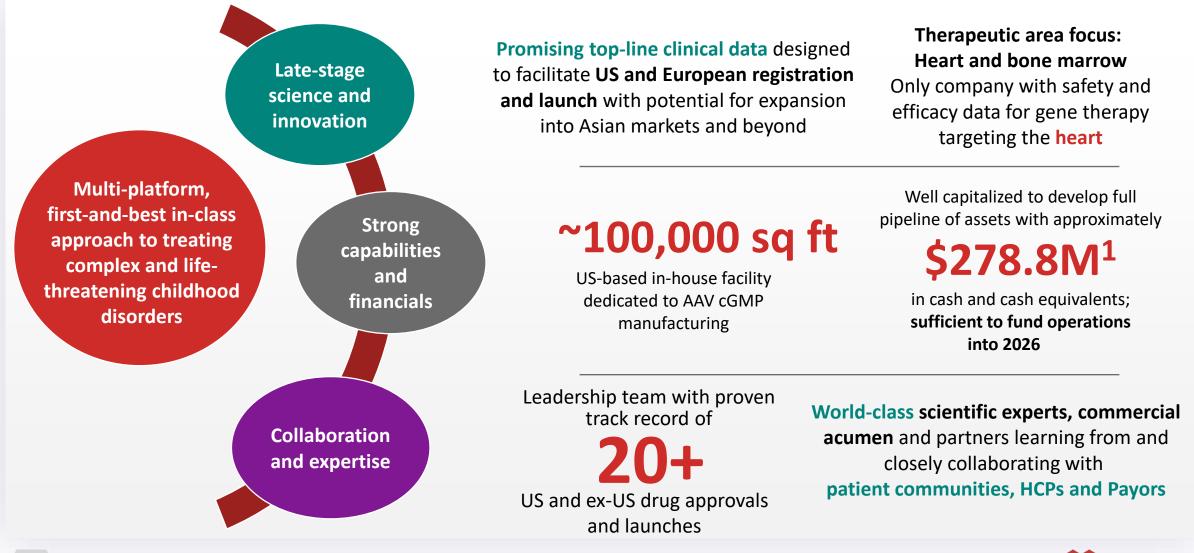
SEEKING GENE THERAPY CURES


August 2024

DISCLAIMER

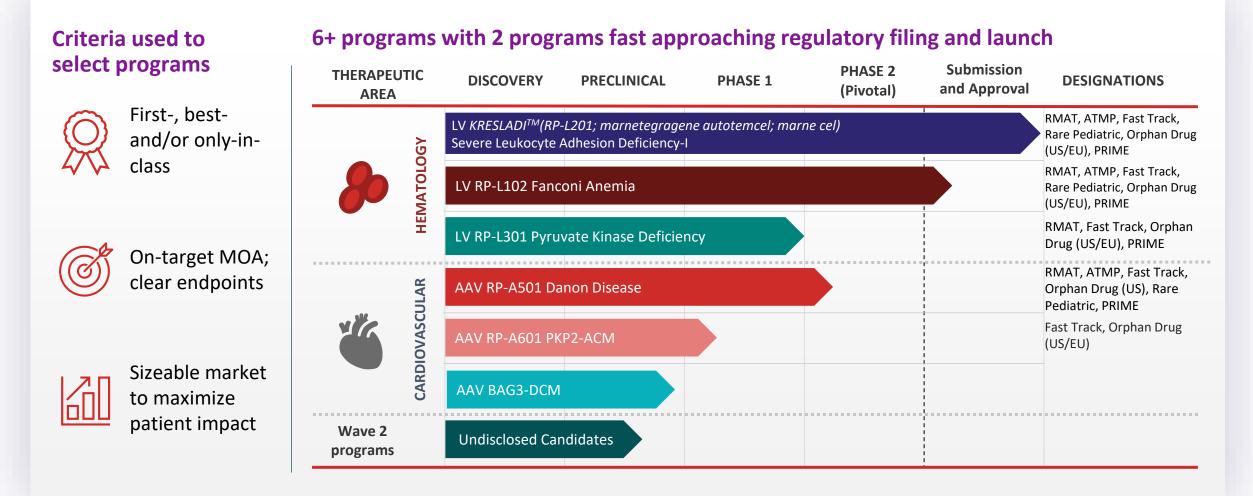
Various statements in this presentation concerning Rocket's future expectations, plans and prospects that involve risks and uncertainties, as well as assumptions that, if they do not materialize or prove incorrect, could cause our results to differ materially from those expressed or implied by such forward-looking statements. We make such forwardlooking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. All statements other than statements of historical facts contained in this release are forward-looking statements. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. These forward-looking statements include, but are not limited to, statements concerning Rocket's expectations regarding the safety and effectiveness of product candidates that Rocket is developing to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Danon Disease (DD) and other diseases, the expected timing and data readouts of Rocket's ongoing and planned clinical trials, the expected timing and outcome of Rocket's regulatory interactions and planned submissions, Rocket's plans for the advancement of its DD program, including its planned pivotal trial, and the safety, effectiveness and timing of related preclinical studies and clinical trials, Rocket's ability to establish key collaborations and vendor relationships for its product candidates, Rocket's ability to develop sales and marketing capabilities or enter into agreements with third parties to sell and market its product candidates and Rocket's ability to expand its pipeline to target additional indications that are compatible with its gene therapy technologies. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, unexpected expenditures, Rocket's competitors' activities, including decisions as to the timing of competing product launches, pricing and discounting, Rocket's ability to develop, acquire and advance product candidates into, enroll a sufficient number of patients into, and successfully complete, clinical studies, Rocket's ability to acquire additional businesses, form strategic alliances or create joint ventures and its ability to realize the benefit of such acquisitions, alliances or joint ventures, Rocket's ability to obtain and enforce patents to protect its product candidates, and its ability to successfully defend against unforeseen third-party infringement claims, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Annual Report on Form 10-K for the year ended December 31, 2023, filed February 27, 2024 with the SEC and subsequent filings with the SEC including our Quarterly Reports on Form 10-Q. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Vision: Seeking Gene Therapy Cures

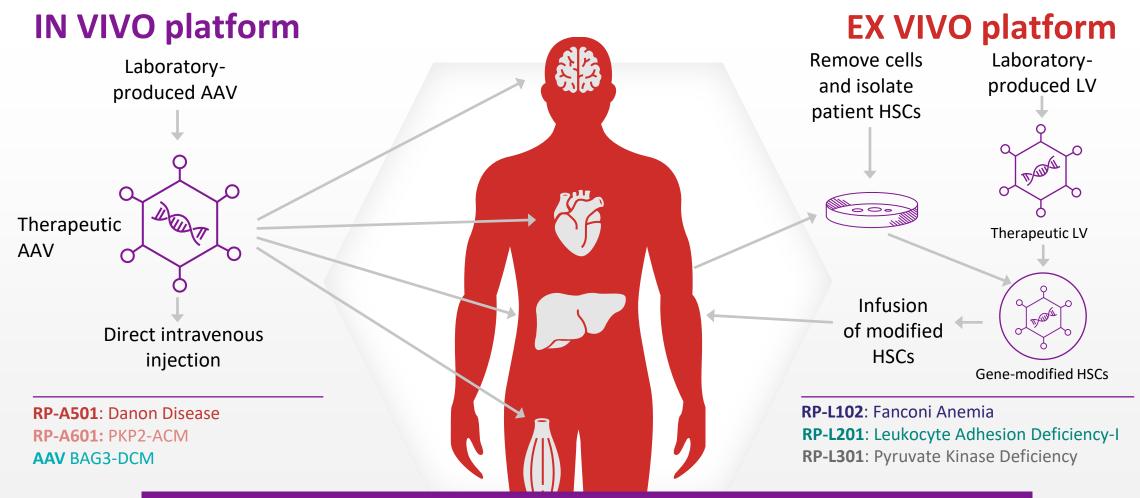


Mission

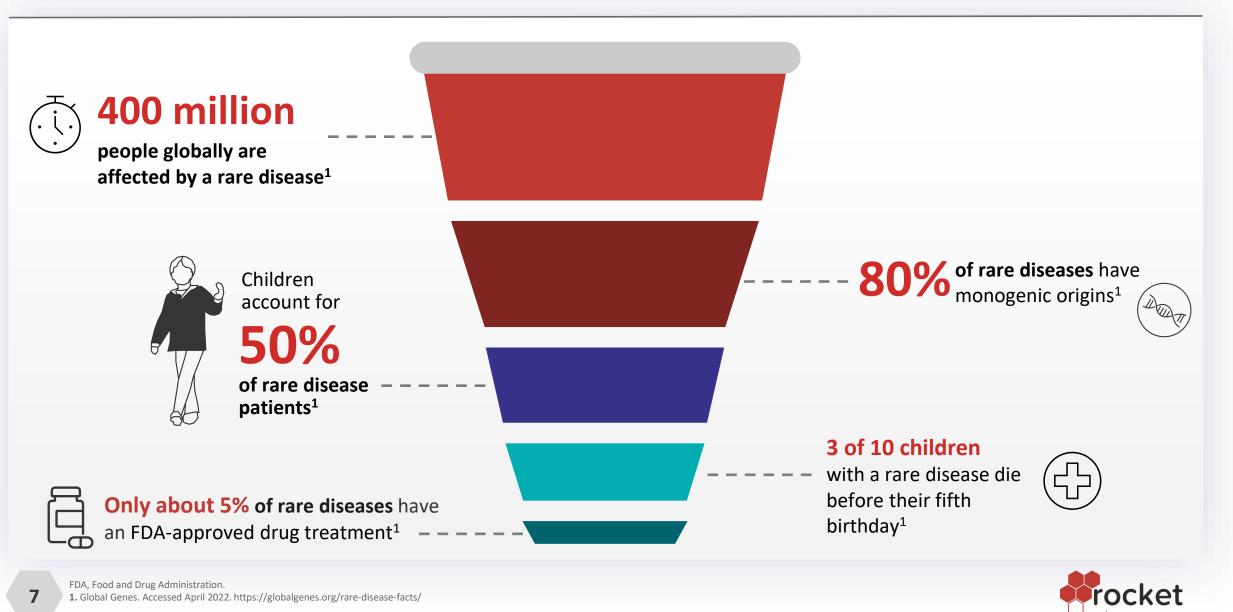
To develop first-in-class and best-in-class curative gene therapies for patients with devastating diseases



A Fully Integrated Gene Therapy Company


Strong Science, Carefully-selected Assets and Smart Execution

AAV, adeno-associated virus; ATMP, advanced therapy medicinal product; BLA, Biologics License Application; LV, lentiviral vector; MAA, Marketing Authorisation Application; MOA, mechanism of action; PRIME, Priority Medicines; RMAT, regenerative medicine advanced therapy. PKP2: plakophilin 2; ACM: Arrhythmogenic Cardiomyopathy; BAG3: BLC2-associated athanogene 3 DCM: Dilated Cardiomyopathy; KRESLADTM, formerly RP-L201; Data on file. Rocket Pharmaceuticals. 2024.


Rocket Offers Multi-platform Gene Therapy Expertise

All Rocket therapies transfer full (non-truncated) coding sequence to target tissue

Rare Diseases Are Associated With a Reduced Lifespan¹

Market for Rare Disease Treatment Is **Rising**

Rare disease treatment market by region, 2015-2026 (USD million)¹

Rare disease treatment market by drug type, 2019 (USD million)¹

Biologics

- Rare disease treatment market is projected to grow from **\$161.4 billion in 2020** to \$547.5 billion by 2030²
- CAGR of 13.1% projected by 2030^{2}

Non-biologics

Orphan drug approvals have increased

CAGR, compound annual growth rate.

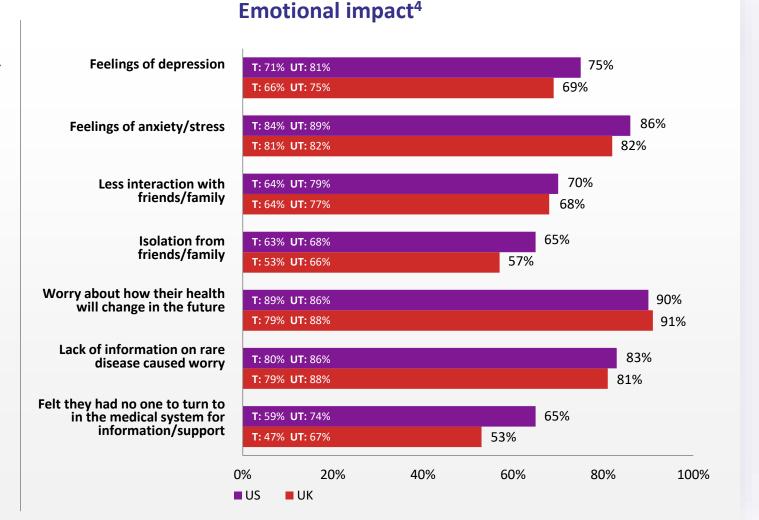
1. Global Market Insights. Accessed April 2022. https://www.gminsights.com/industry-analysis/rare-disease-treatment-market 2. Global News Wire. Accessed August 2022.

https://www.globenewswire.com/en/news-release/2021/02/24/2181634/0/en/Global-Rare-Disease-Market-is-estimated-to-be-US-547-5-billion-by-2030-with-a-CAGR-of-13-1-during-the-forecast-period-by-PMI.html

3. AHIP. Accessed April 2022. https://www.ahip.org/how-big-pharma-makes-big-profits-on-orphan-drugs (increase from 1998 to 2017)

Costs Associated With Rare Diseases Have Increased Exponentially¹

Economic impact¹


26-fold increase in average perpatient annual cost for orphan drugs* compared to doubled costs for specialty and traditional drugs¹

Patients with rare diseases or their caregivers are often compelled to leave the workforce²

Cost of **bone marrow** and **heart transplants & maintenance** is high

*An orphan drug is a pharmaceutical agent developed to treat medical conditions, which, because they are so rare, would not b e profitable to produce without government assistance. T, treatable; UT, untreatable.

AHIP. Accessed April 2022. https://www.ahip.org/news/press-releases/drug-prices-for-rare-diseases-skyrocket-while-big-pharma-makes-record-profits (increase from 1998 to 2017)
 Every Life Foundation for Rare Diseases. Accessed April 2022. https://everylifefoundation.org/wpcontent/uploads/2021/02/The_National_Economic_Burden_of_Rare_Disease_Study_Summary_Report_February_2021.pdf
 Global Genes. Accessed April 2022. https://globalgenes.org/wp-content/uploads/2013/04/ShireReport_1.pdf

9

10

Danon Disease (DD): Serious Condition with High Unmet Medical Need

Market Opportunity – US and EU Prevalence of 15,000 to 30,000 individuals Annual incidence of 800 to 1,200 individuals

Disease Etiology

 X-linked, dominant, monogenic disease

 Loss-of-function mutations in LAMP2

Therapeutic Challenges

- Standard of care:
 - Heart transplant (HTx)
- Limitations:
 - Considerable morbidity and mortality
 - Only ~20% of patients receive HTx
 - Not curative of extracardiac disease

Clinical Manifestations

Impaired autophagy

- Prominent autophagic vacuoles
- Myocardial disarray

Severe cardiomyopathy

Other clinical manifestations

- Skeletal myopathy
- CNS manifestations
- Ophthalmologic manifestations
- Mortality secondary to heart failure or arrhythmia
- Males: Aggressive disease course, median overall survival: 19 years
- Females: Delayed median presentation (~20 years later) due to additional X chromosome, highly morbid and fatal disorder

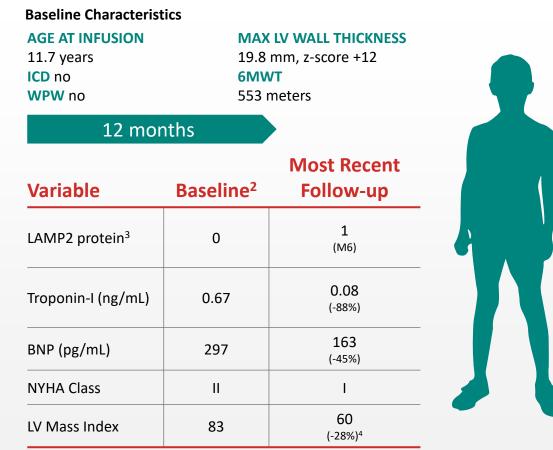
Phase 1 Data: Benefit Observed Across All Key Clinical Parameters

Early LAMP2, BNP, ThI changes associated with sustained clinical improvement and guided Phase 2 endpoint selection

		I	• • • • • • • • • • • • • • • • • • • •							
Cohort	Patient ID	Follow-up (months)		Tnl Δ (≤M12)	BNP Δ (≤M12)	LV mass Δ (g)	LV Mass Index ∆ (g/m^2.7)	Max LV Wall Thickness Δ (mm)	NYHA class Δ	KCCQ score Δ
Low dose adult/ adolescent	1001 (17.4 aai)	36	1	-75% (M18)	-36%	311> 212	85→ 57	25> 23	>	44> 49
	1002 (20.3 aai)	36	3	-79%	-76%	989> 511	260> 129	64→ 38	>	64> 81
	1005 (18.3 aai)	30	2 (M9)	-57% (M9)	-64% (M9)	438> 375	98→ 76	33→ 24	>	77→ 85 (M24)
High dose adult/ adolescent	1006 (21.1 aai)	24	1	-47%	-70%	410> 300	90→ 63	22→ 18	→	79> 82
Low dose pediatric	1008 (12.3 aai)	12	1	-86%	-83%	605 447	140 → 96	42> 39	>	50→ 82
	1009 (11.7 aai)	6	1	-90%	-62%	234→ 185	83→ 63	20> 20	>	52→ 78

All specified parameters either improved or stabilized (none deteriorated)

Improved Stabilized W

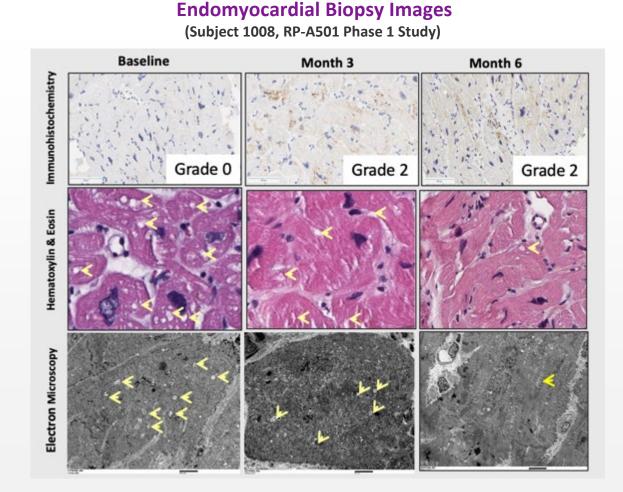

Does not include pt 1007 in Ph1 trial who had advanced HF with EF<40% at enrollment and received HTx 5M following tx due to pre-existing advanced HF. Patient is currently stable. aai, age at infusion, BNP, brain natriuretic peptide; hsTnl, high-sensitivity troponin I; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAMP2, lysosome-associated membrane protein 2; LV, left ventricle; NYHA, New York Heart Association. Data cut-off Oct 6, 2022; Grade 0 = negative staining; Grade 1 = <25%; Grade 2 =26%-50%; Grade 3 =51%-75%; Grade = 4 >75%. Low dose = 6.7x1013 GC/kg, high dose = 1.1x1014 GC/kg Focket

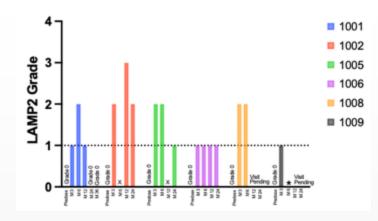
RP-A501: Danon Disease

Latest Phase 1 Pediatric Data Shows Sustained Improvements in Biomarkers, Symptoms, and Function

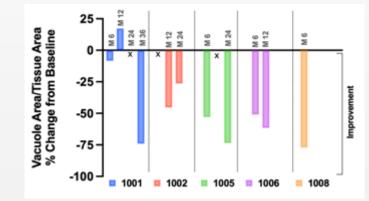
Subject ID: A501-008-1008 **Baseline Characteristics** AGE AT INFUSION MAX LV WALL THICKNESS 12.3 years 41.9 mm. z-score +32 ICD ves¹ 6MWT WPW yes 438 meters 18 months **Most Recent** Variable Baseline² **Follow-up** 1 LAMP2 protein³ 0 (M12) 0.30 Troponin-I (ng/mL) 1.89 (-84%) 328 BNP (pg/mL) 1837 (-82%) NYHA Class Ш 96 140 LV Mass Index (-31%)4

Subject ID: A501-008-1009


¹ Recommended prior to enrollment; ICD implanted 3 months after RP-A501 infusion. ² Baseline values for troponin-I and BNP are the mean values from all pre-dose visits. ³ Extent of LAMP2 expression grading: Grade 0 = negative staining, Grade = 1 < 25%, Grade 2 = 26-50%, Grade 3 = 51-75%, Grade = 4 > 75%;. ⁴M12 Note: All data preliminary, not yet validated.

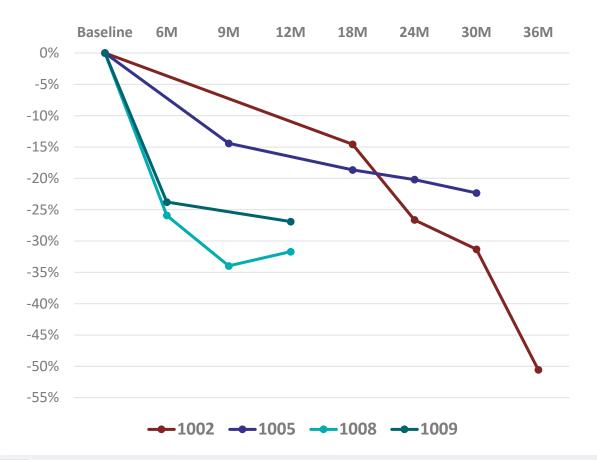

6MWT, 6-minute walk test; BNP, brain natriuretic peptide; ICD, implantable cardioverter defibrillator; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAMP2, lysosome-associated membrane protein 2; LV, left ventricle; NYHA, New York Heart Association; WPW, Wolff-Parkinson-White syndrome.

RP-A501 Increases LAMP2 Protein and Decreases Vacuolization


Enhanced autophagy leads to improved myocardial ultrastructure and clinical phenotype

Myocardial LAMP2 Protein Expression

Vacuolar Area of Endomyocardial Tissue



Rocket AHA 2022 Poster Presentation reflects September 27, 2022 data cutoff. LAMP2, lysosome associated membrane protein 2; M, month; IHC = immunohistochemistry. Grade 0 = negative staining; Grade 1 = <25%; Grade 2 = 26%-50%; Grade 3 = 51%-75%; Grade 4 = >75%.

14

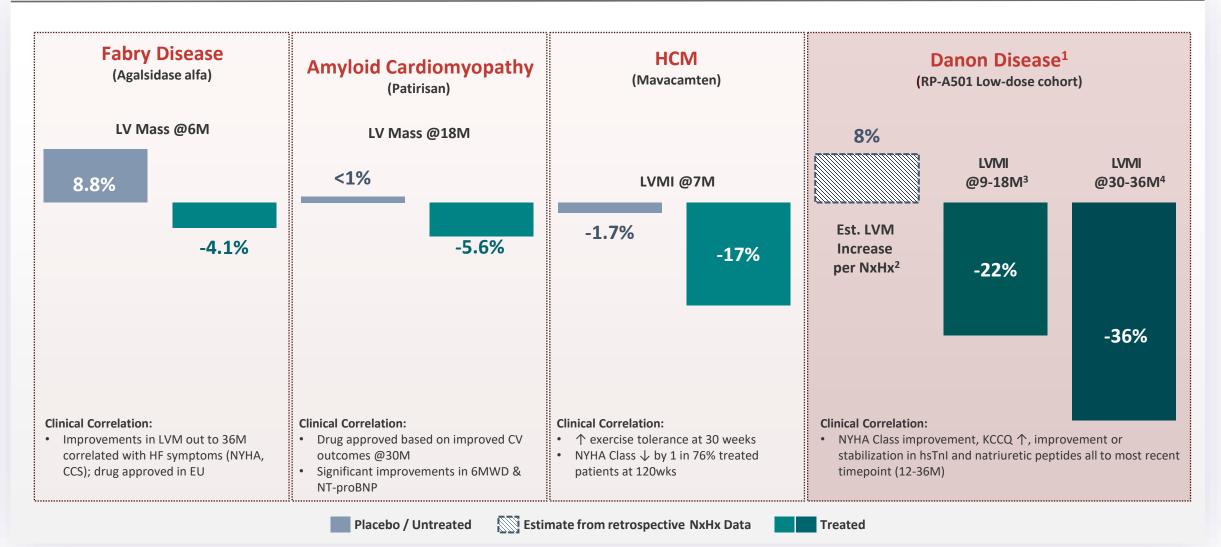
LV Mass Index in RP-A501 Phase 1 Study

RP-A501 Phase 1 Low-Dose Cohort: LV Mass Index % Change from Baseline¹

RP-A501 Phase 1 Study: LV Mass Index % CFB at ~12M

(9M or 18M where 12M not available)²

- >20% LVMI decrease observed as early as 6M in pediatric cohort, sustained to 12M timepoint
- Adult patients with appropriate immunomodulation show
 >10% LVMI decrease around 12M² with further decreases out
 to 30-36M of 22% to 51%



RP-A501: Danon Disease

15

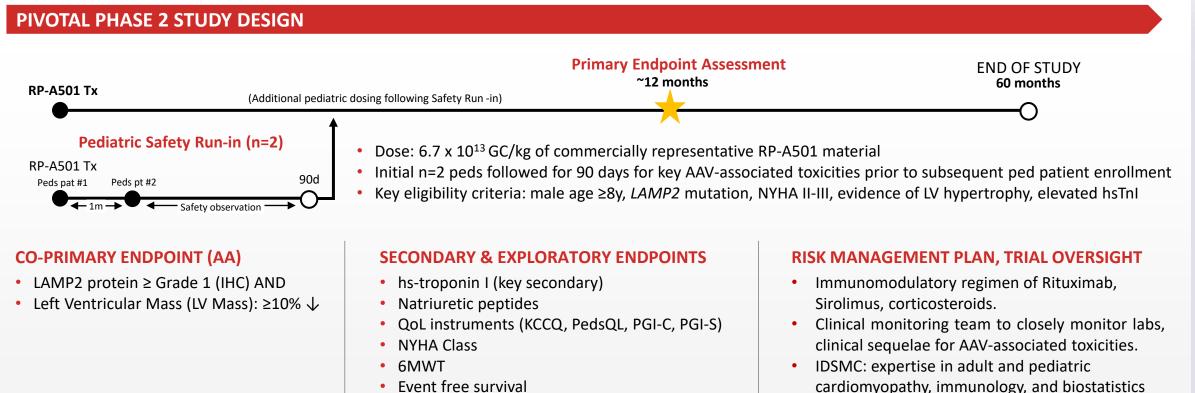
LV Mass / LV Mass Index (LVMI) Improves in DD with RPA501

LV hypertrophy decreases greater than/comparable to other approved therapies

¹ RP-A501 Phase 1 low-dose cohort data; averages do not include 1001 (unmonitored immunomodulation) and 1006, 1007 (high dose patients). ² Reflects estimated LV Mass increase over 12-18M for DD patients based on retrospective natural history data-set (shown on slide 20). ³ Reflects average of 1002 18M, 1005 9M, 1008 12M, 1009 12M. ⁴ Reflects average of 1005 30M, 1002 36M Hughes 2008. Heart; Solomon 2019. Circulation; Saberi 2021. Circulation

Insights from Danon Disease Patients Treated on the Phase 1 Trial

He can walk upstairs without being short of breath or having to stop half-way. He doesn't have chest pain or fast heart rates like he used to. Another amazing thing we have seen is about 4 months after his therapy trial he started working and stopped using his motorized scooter altogether. -Patient 1005


Prior to therapy, he would say "my wish is not to die young." After gene therapy, we see him smile more because he was able to hold down a steady part-time job and can live independently in an apartment of his own. He is living a life he didn't think would be possible. –Patient 1006

He went to overnight summer camp on his own for the first time and is no longer out of breath walking up stairs. -Patient 1008

He is now able to exercise on a more regular basis. After treatment, he was able to participate in an organized walk with his father completing most of the 10K course. -Patient 1009

Phase 2 Trial Design – 12 Patients with 12-month Primary Endpoint Duration Pivotal, global, single-arm, open label study

- Event free survival
- Treatment emergent safety events
- Actigraphy

CONCURRENT NATURAL HISTORY STUDY

Tx, treatment; LV, left ventricular; NYHA, New York Heart Association; hsTnI, high-sensitivity troponin I; QoL, quality of life; KCCQ, Kansas City Cardiomyopathy Questionnaire; PedsQL, Pediatric Quality of Life Inventory; 17 PGI-C, Patient Global Impression of Change; PGI-S, Patient Global Impression of Severity; IDSMC, Independent Data Safety and Monitoring Committee.

Primary Endpoint Is Reasonably Likely to Predict Clinical Benefit

Justification for use of LAMP2 protein expression and LV Mass

WT Full Length LAMP2 Protein Expression

- Mutation of LAMP2 is root cause of Danon disease
- Epidemiologic support: even modest levels of LAMP2 confer a 2-decade survival advantage in female patients
- RP-A501 delivers full coding sequence of WT LAMP2 gene
- Pre-clinical LAMP2 restoration conferred histologic, functional and survival benefits in LAMP2 knock-out model¹
- Phase 1: LAMP2 expression associated with decreased vacuolar area, improved myofibrillar disarray, clinical improvement

Left Ventricular Mass

- Largest known hearts are Danon disease hearts
- Severity of the cardiomyopathy in Danon disease is the major prognostic factor²
- Retrospective natural history shows year-over-year increases in LV mass in Danon disease patients
- Phase 1: Consistent and significant reductions in LV mass as early as 6 months by echocardiography and cardiac MRI

Primary Endpoint Will Be Interpreted in a Clinical Context:

- All components are measurable and unlikely to improve in the absence of a true treatment effect
- Primary endpoint will be assessed in the context of biomarkers, symptoms, QOL, clinical events derived from secondary endpoints and concurrent natural history study
- Phase 1 trial: LAMP2 expression and LV Mass improvements seen as early as 6 months in pediatric subjects with updated immunomodulation regimen

In-House Manufacturing to Support Danon Pivotal Study and Commercial Production

- 2 Successful Danon AAV cGMP batches produced in Q4 2022
- Superior specifications to Phase I material; allow for full dosing with lower total viral particles, potentially further improving safety profile
 - *Productivity:* ~3X increase in number of patient treatments per batch
 - Product Quality: Significant increase in full versus empty viral particles
 - *Product Comparability:* All attributes tested to date are comparable or improved
- Regulatory progress and production capacity can support pivotal study <u>and</u> commercialization
 - FDA clearance on continued utilization of HEK-293 cell-based process through commercial
 - FDA alignment on comparability approach
 - Potency assay developed in-house

Overall, in-house cGMP manufacturing delivers commercial-ready product with higher yield, improved quality, and potential for enhanced safety profile

RP-L102 for Fanconi Anemia Complementation Group A (FA-A)

Fanconi Anemia (A, C, and G)

Market Opportunity – US and EU Prevalence of 5,500 to 7,000 individuals Annual incidence of 200 to 275 individuals

) Disease etiology

- FA-A is an autosomal recessive disease caused by FANCA
 - gene mutations
- FA proteins enable DNA repair
- FA-A accounts for 60% to 70% of FA cases

Therapeutic challenges

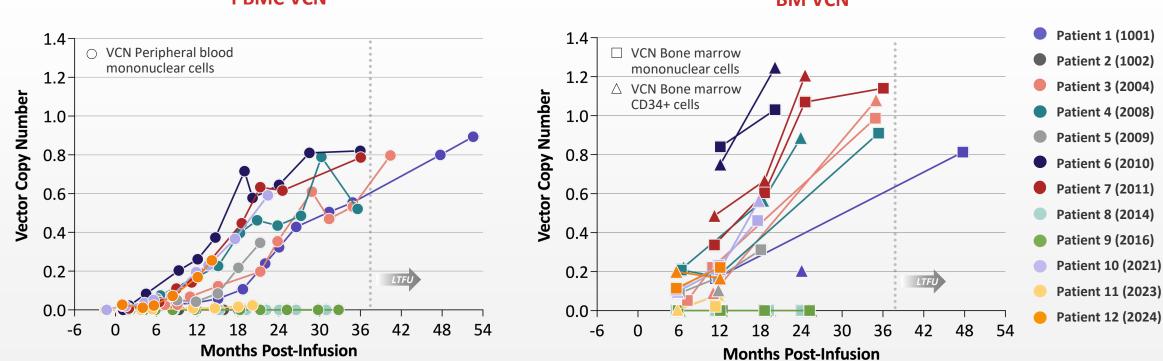
Standard of care:

- Allogeneic HSCT
 Limitations:
- Significant toxicities, especially for patients who do not have an HLAidentical sibling donor (~80%)
- 100-day mortality
- GvHD
- Increased long-term cancer risk

Clinical manifestations

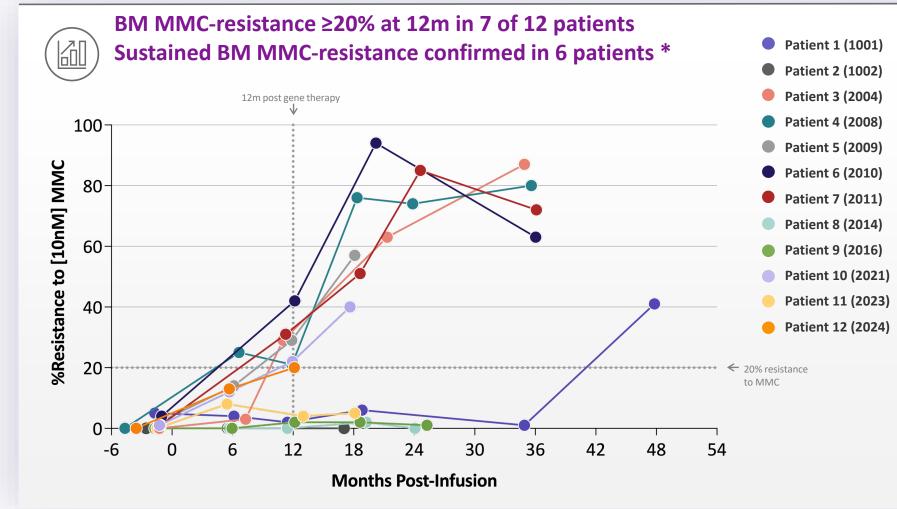
Disorder of DNA repair characterized by:

- Progressive BMF; 80% of patients experience BMF within first decade of life
- Predisposition to hematologic malignancies and solid tumors


Gene therapy approach: Selective advantage of corrected cells allows for **ex-vivo** LV therapy <u>without conditioning</u>; highly favorable benefit risk profile

BMF, bone marrow failure; FA, Fanconi Anemia; FA -A, FA, group A; FANC, FA complementation group; GvHD, graft-versus-host disease; HLA, human leukocyte antigen; HSCT, hematopoietic stem cell transplantation. Alter BP, Giri N, Savage SA, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179-188.

Progressively Increasing and Sustained Genetic Correction in 8 of 12 Patients ≥1 Year Post–RP-L102 in Pivotal Phase 2 Trial

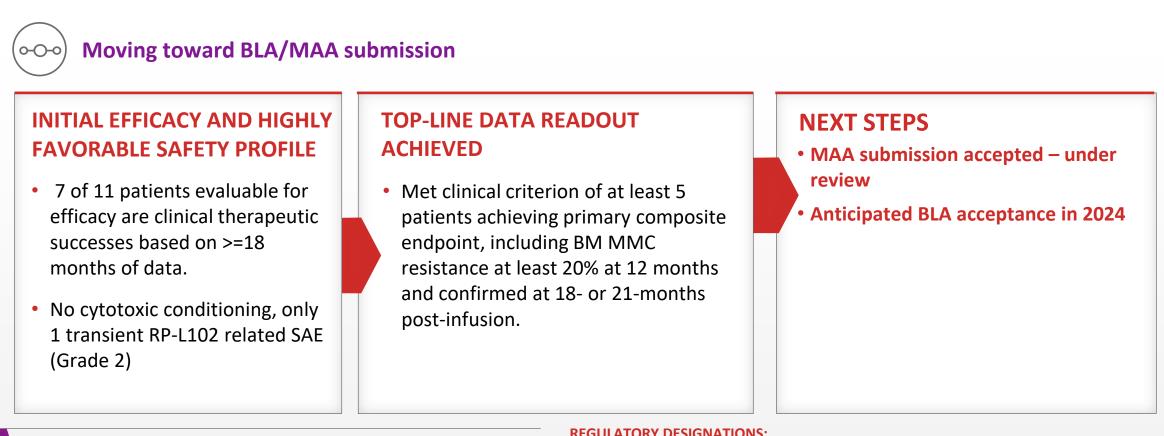


PBMC VCN

BM VCN

Increasing Phenotypic Correction (MMC-resistance) over 1 to 3 Years Post RP-L102 in Pivotal Phase 2 Trial

7 of 12 patients had MMC-resistance of ≥20% at 12 months


For 6 patients, increased MMC-resistance in BM CFU (40% to 94%) was observed 18 to 24 months post RP-L102 (confirmatory assessment pending for patient 12 (2024))

BM, bone marrow; CFU, colony -forming units; MMC, mitomycin-C.

*One additional patient (Patient 1: 1001) was noted to have BM MMC resistance of 49% at ~40 months post–RP-L102 infusion (Unscheduled visit, not shown) and ~41% at 48 months post–RP-L102 infusion. Data cut-off: September 11, 2023; Preliminary interim results are presented from the ongoing clinical studies.

Development Plan

Additional life-cycle management activities:

- Expansion to FANC C and G
- Exploration of non-genotoxic conditioning and HSC expansion

REGULATORY DESIGNATIONS:

- RMAT, PRIME
- Orphan Drug designation in the US/EU
- Rare Pediatric Disease designation (eligible for PRV)
- Fast Track (US), ATMP

RP-L201: LAD-I

RP-L201 for LAD-I: ITGB2 Gene Mutation

Disease etiology

- ITGB2 gene mutations (21q22.3), encoding the beta-2-integrin, CD18; essential for leukocyte adhesion to endothelium
- CD18 absent or reduced on neutrophils

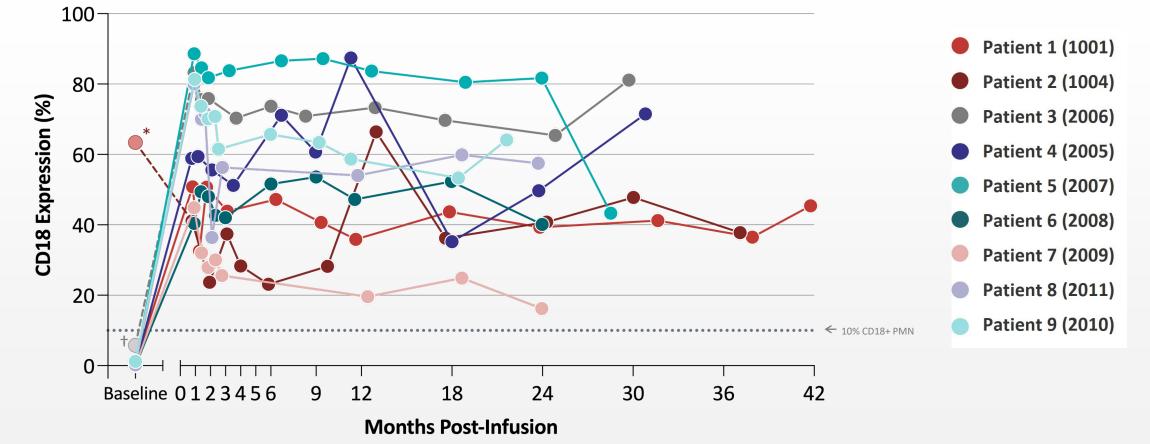
Therapeutic challenges

- Standard of care:
- Allogeneic HSCT
 Limitations:
- Donor availability
- Infections
- Frequent GvHD
- Graft failure

Clinical manifestations

Patients suffer from recurrent infections; fatal in majority

- Severe LAD-I: Death prior to age 2 in 60% to 75% of patients, infrequent survival >5 years in absence of allogeneic HSCT
- Moderate LAD-I: Death prior to age 40 in >50% of patients, extensive morbidity with recurrent infections and inflammatory lesions


Market Opportunity – US and EU Prevalence of 800 to 1,000 individuals Annual incidence of 50 to 75 individuals

RP-L201: LAD-I

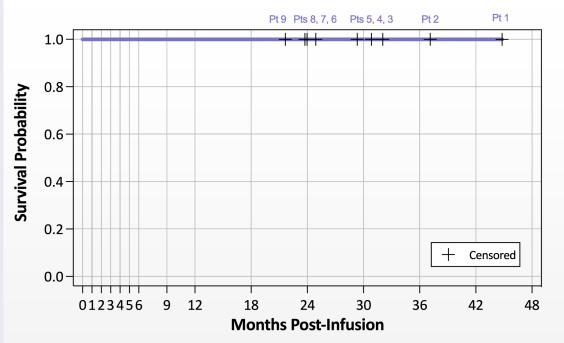
CD18 Expression in PB Polymorphonuclear Cells (PMNs) in Pivotal Phase 1/2 Trial

Neutrophil CD18 expression is reported utilizing CD18 monoclonal antibody (clone 6.7).

25

* Dim/weak CD18 expression reported at baseline for Patient 2 (1004) in ~63% of cells in conjunction with <2% CD11a/CD11b expression, likely indicating abnormal/unstable protein.

+ Dim/weak CD18 expression reported at baseline for Patient 3 (2006) in ~5.8% of cells in conjunction with <2% CD11a/CD11b expression, likely indicating abnormal/unstable protein

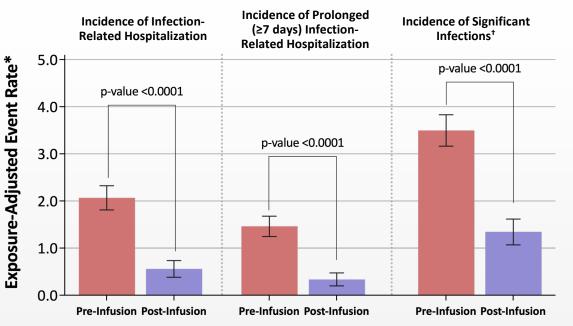

Data on file. Rocket Pharmaceuticals. 2024. Data Cut-Off: July 24, 2023. RP-L201-0318 120-Day Efficacy Update.

Pt 5 (2007) VCN at 30m timepoint remained stable relative to prior months, consistent with aberrant (artifactually low) CD18 result

RP-L201: LAD-I

Significant Reduction in Hospitalizations and 100% HSCT-free Survival in Pivotal Phase 1/2 Trial

100% HSCT-free survival Kaplan–Meier estimate

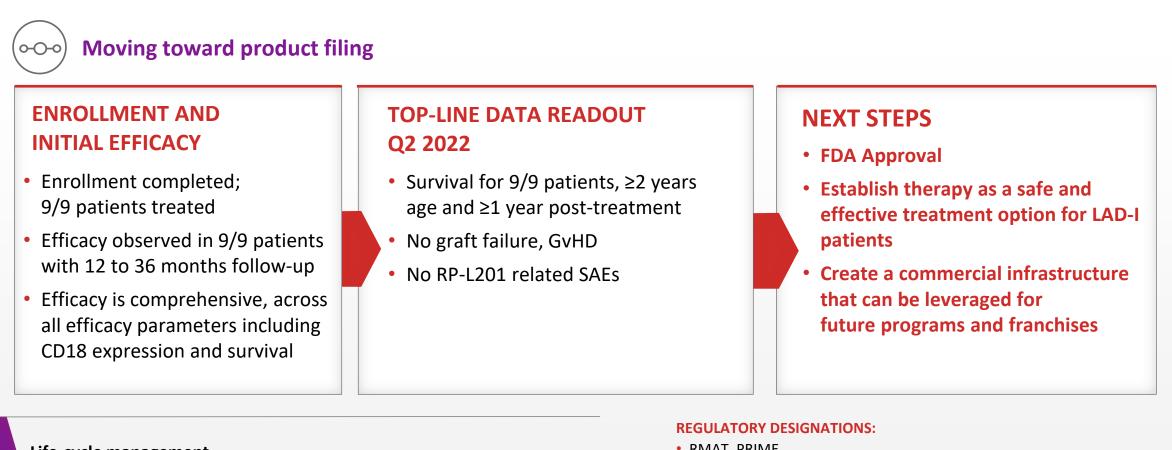


Survival without allogeneic HSCT

Primary outcomes

- ≥1-year post–RP-L201 infusion AND
- ≥2 years of age for subjects enrolled <1 year of age

Meaningful reduction in infection-related hospitalizations following immune reconstitution



- Infections that developed beyond 90 days post-infusion were consistent with typical childhood infections frequently observed in immunocompetent (healthy) children
- All patients have been able to stop prophylactic antibiotics (when permitted by institutional policy)

* Annualized event rate is calculated as the Total Number of Events / Total Time in each Time Period. Results are adjusted ev ent rate per year. Pre-infusion includes all lifelong medical history prior to RP-L201 infusion. p-values from Poisson regression with event and time period in the model with an offset of log exposure.

Development Plan

Life-cycle management

Potential label expansion to include moderate LAD-I population

- RMAT, PRIME
- Orphan Drug designation in the US/EU
- Rare Pediatric Disease designation (eligible for PRV)
- Fast Track (US), ATMP

28

RP-L301 for PKD: PKLR Gene Mutation

Disease etiology

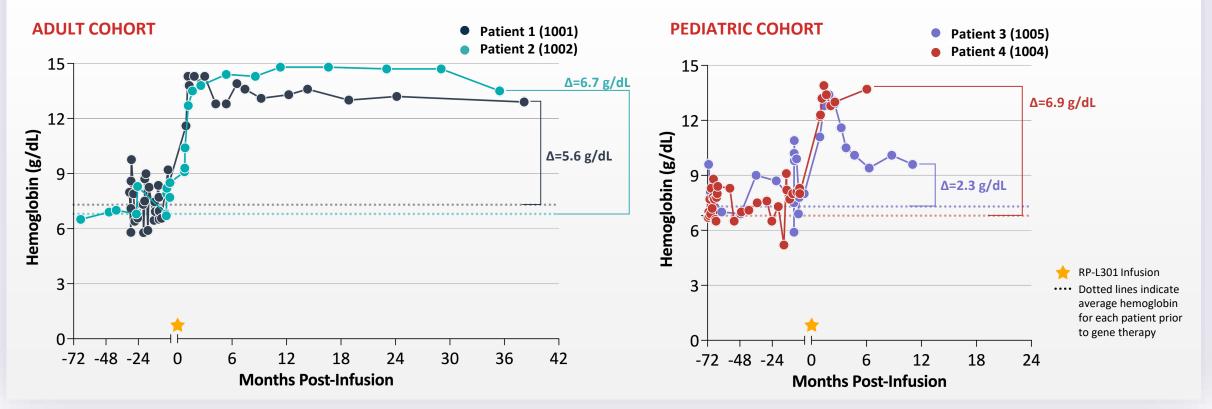
- Autosomal recessive inheritance
- Pyruvate kinase deficient RBCs cannot synthesize ATP, resulting in
 - hemolytic anemia

Therapeutic challenges

- Standard of care: Chronic blood transfusions and splenectomy
- Limitations:
 - o Iron overload
 - o Extensive end-organ damage
 - Splenectomy confers lifelong infection and thrombotic risk

Clinical manifestations

- Lifelong chronic hemolysis
- Other clinical manifestations:
 - o Anemia
 - o Jaundice
 - o Iron overload


Market Opportunity – US and EU Prevalence of 4,000 to 8,000 individuals Annual incidence of 75 to 125 individuals

RP-L301: PKD

Preliminary Phase 1 Efficacy Results: Adult and Pediatric Patients

Sustained & meaningful hemoglobin improvements from severe (<8 g/dL) baselines No RBC transfusions required following neutrophil engraftment Concurrent improvement across biochemical markers

The average baseline Hb is determined by Hb values from 2y prior to enrollment to immediately prior to stem cell mobilization, excluding those impacted by RBC tx. Post-transfusion Hb values within 61d of a prior RBC tx were excluded unless the reported Hbb value was a pre-tx assessment for a subsequent RBC tx within 3 days of the prior RBC tx date.

rocket

29 It were excluded unless the reported Hbb value was Hb, hemoglobin; RBC, red blood cell; Tx, transfusion

Data on file. Rocket Pharmaceuticals. 2024. Data cut-off: February 5, 2024; preliminary interim results are presented from the ongoing clinical study.

Development Plan

Alignment reached with FDA on pivotal Phase 2 trial design

PLAN FOR PHASE 2 AND LAUNCH

High level pivotal Phase 2 Trial Design

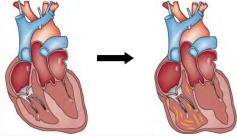
- Single-arm, 10 patient study
- Primary endpoint of ≥1.5-point Hgb improvement at 12 months
- Supports accelerated approval

Well-delineated natural history in recent PKD NHS publications

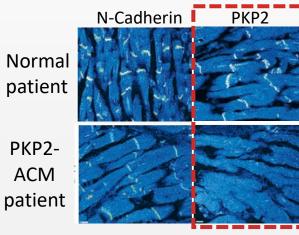
REGULATORY DESIGNATIONS

Fast Track, RMAT, Orphan Drug (US/EU), PRIME, Rare Pediatric Disease (eligible for PRV)

NEXT STEPS


 Initiation of Pivotal Phase 2 Study

RP-A601: PKP2-ACM


PKP2-Arrhythmogenic Cardiomyopathy (ACM)*: A high-risk disease with no curative options

Advanced ACM Heart with fibrofatty replacement in right ventricle

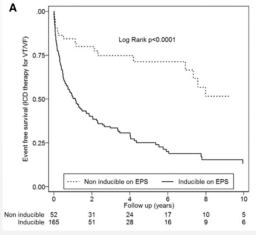
Electrical manifestations can precede structural abnormalities

ACM: Diminished Myocardial PKP2

 Autosomal dominant mutations in *PKP2* gene, which encodes for Plakophilin-2, a component of the desmosome localized to cardiac intercalated discs

Therapeutic Challenges

- Current standard of care includes betablockers, anti-arrhythmic agents, and ablation
- Available treatments do not modify disease progression; no curative therapeutic options

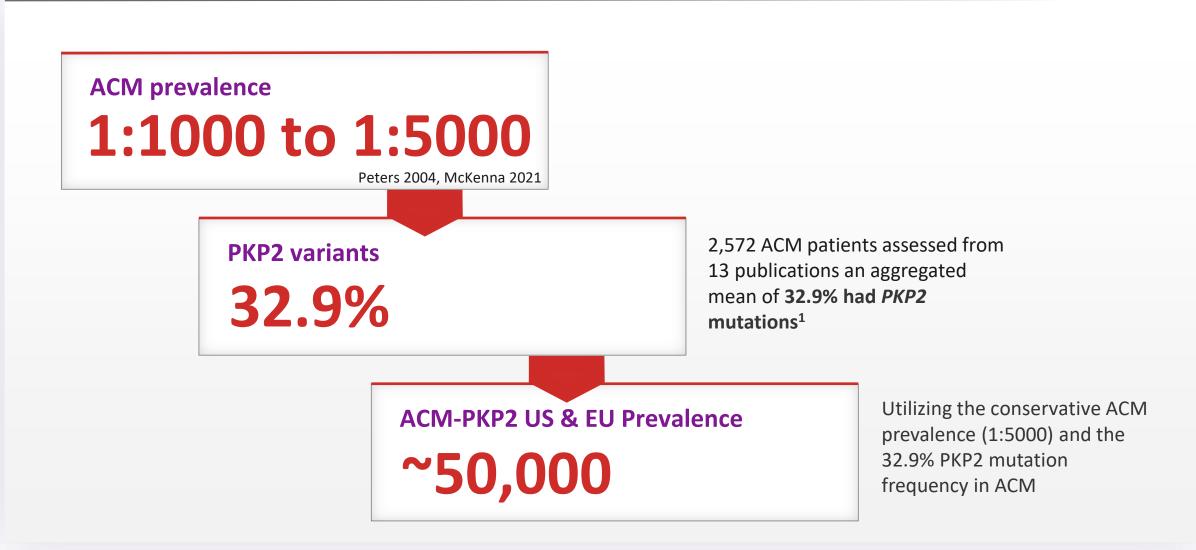

).

Clinical Manifestations

- Mean age at presentation: 35y (±18)¹
- 5-10% annual risk of sustained ventricular arrhythmias (VA), with higher risk in patients who present with symptoms of disease (index patients)²⁻³
- In one study, >70% risk of VAs in index patients (median follow up, 7 years)⁴
- ICD placement in >80% of index patients ⁵
- For patients with ICDs:
 - 45-75% will have ICD firing (shock) over 3-5 years
 - ≥50% 2-year incidence of firing in subgroups:
 - male; EPS-induced VT; history of VT;
 - \geq 3 ECG leads with TWI; >1000 PVC/24h ⁵⁻⁶

Estimated Prevalence (US+EU): ~50,000

Kaplan-Meier Incidence of ICD Firing


- Event free survival in ACM patients who underwent EP study prior to placement of an ICD
- ~70% of patients who were inducible on EP study had an ICD firing at 2 years

Biopsy figure adapted from: Asimaki et al. NEJM, 2009; Table adapted from Dalal et al. Circulation 2006. SOC: standard of care; CM: cardiomyopathy; HF: heart failure: HTx: heart transplantation; RV: Right ventricular; SD: Standard Deviation; VT: ventricular tachycardia; LBBB: left bundle branch block; ICD: implantable cardioverter defibrillator; RVEF: right ventricular ejection fraction; LV: left ventricle; SVA: sustained ventricular arrhythmia.

* This cardiomyopathy initially manifests in the right ventricular free wall, so the disease was termed arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/ARVC). However, since left dominant and biventricular forms have also been observed, this has led more recently to the use of the term "ACM". 1. Bhonsale. EHJ 2015; 36: 847-55. 2. Towbin JA. Heart Rhythm 2019;16(11). 3. Cadrin-Tourigny J. Eur Heart J 2022;43.
 4. Groenweg. Circ Cardiovasc Genet 2015; 8: 437-46. 5. Calkins. Circ 2017; 136: 2068-82. 6. Orgeron. J Am Heart Assoc 2017: e006242.

32

PKP2-ACM Prevalence in the US and EU

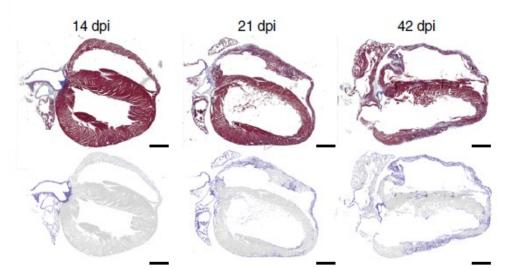
Peters S, Trümmel M, Meyners W. Prevalence of right ventricular dysplasia-cardiomyopathy in a non-referral hospital. Int J Cardiol. 2004;97(3):499-501. McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies. Nat Rev Cardiol. 2021;18(1):22-36. ¹ Data on file

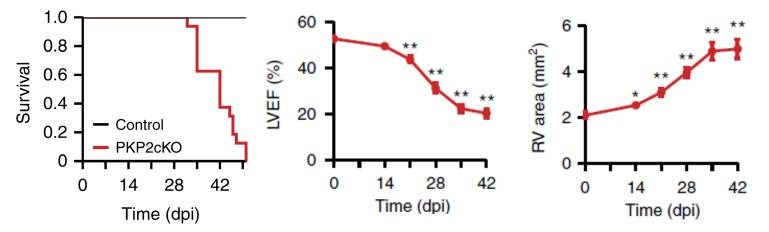
Proof of Concept in Translationally Relevant Animal Model

Completed RCKT Studies with Cardiomyocyte-specific PKP2 Knockout Mouse Model of ACM

- Initial POC evaluated 4 AAV Vectors: Cardiac Functional & Structural Analyses
- Dose-related effects evaluated with 2 AAV vectors: Cardiac Functional & Structural Analyses
- Evaluated Survival, Functional, and Anatomic Benefit in 'Arrest Progression' Models
 - Including delivery of AAV +7 or +14 Days after induction of PKP2 knockout and subsequent disease onset

Analyses Include:	Academic Partner:	Mario Delmar, MD, PhD Patricia and Robert Martinsen Professor of Cardiology, Department of Medicine; Division of Cardiology,				
 Survival 	NYU Grossman School					
 Echocardiography and ECG PKP2 expression (IF and WB) 	of Medicine	NYU Grossman School of Medicine				
• Cardiac pathology & fibrosis		Marina Cerrone, MD Research Associate Professor,				
 Vector DNA, transgene mRNA General safety including pathology 						
		Co-Director, Inherited Arrhythmia Clinic, Department of Medicine; Division of Cardiology,				
Completed sponsored research.		NYU Grossman School of Medicine				

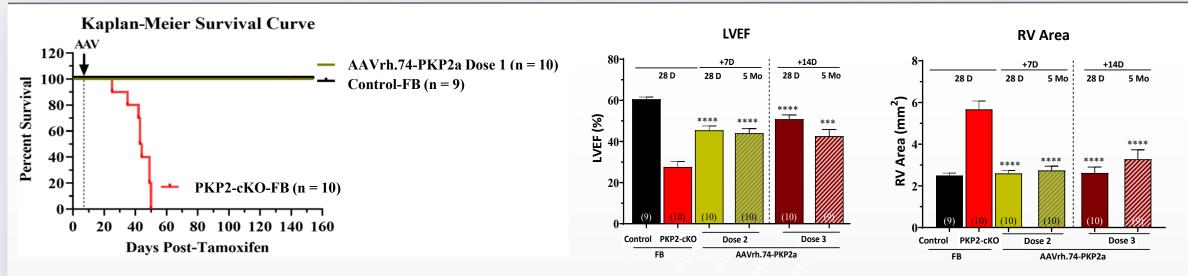

rocket

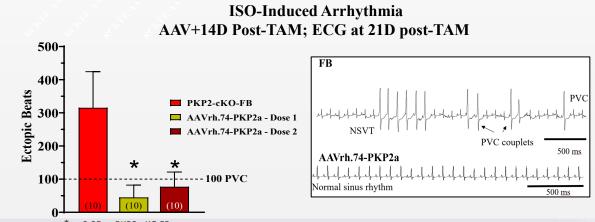

RP-A601: PKP2-ACM

34

Tamoxifen-induced ACM in the PKP2-cKO Mouse Model

- The PKP2-cKO mouse model recapitulates ACM following induction of PKP2 KO by tamoxifen (TAM) injection
- Progression of cardiomyopathy evidenced by Masson's trichrome staining of heart sections in PKP2-cKO mice from 14 to 42 days post-TAM (dpi)
- 100% mortality by day ~50 following TAM injection
- Left ventricular ejection fraction (LVEF) diminishes significantly across time
- Right ventricular (RV) enlargement occurs across time
- Premature Ventricular Contractions (PVCs) are a clinical hallmark of ACM and emerge in the animal model because of Pkp2 loss





RP-A601: PKP2-ACM

Increased Survival & Preserved Cardiac Function in the PKP2-cKO Model

- AAVrh.74-PKP2 delivered 7 days post-TAM:
 - 100% survival to 5 months, compared to 100% mortality by day ~50 in PKP2-cKO control animals
 - Preserved Ejection Fraction and Right Ventricular Area at 28 Days, sustained to 5 months
- AAVrh.74-PKP2 delivered 14 days post-TAM:
 - Mitigated isoproterenol-induced PVCs and arrhythmia, disease-related characteristics of ACM
 - Robust benefit on survival, cardiac function & structure to 5 months¹

*p <0.05 vs PKP2-cKO FB ISO = isoproterenol; TAM = tamoxifen; ECG = Electrocardiography

35

Optimal Gene Therapy for PKP2-ACM Expected to be First-and Best-In-Class

cDNA/isoform:

• PKP2a: full wild type coding sequence of therapeutic gene, protein loss drives ACM

AAV Serotype:

• AAV.rh74 serotype associated with favorable safety profile in DMD/LGMD2E¹⁻³; potential for safe administration at optimal doses for adult ACM patients

Cardiac-Specific Promoter:

• Effectively drives expression of therapeutic transgene in cardiomyocytes; minimizes off-target effects

Route of Administration:

• Intravenous (IV) Pharmacology studies demonstrate efficient cardiac transduction with IV administration

Robust Proof of Concept in Disease Relevant Animal Model:

• NYU Cardiac-specific cKO-PKP2 mouse (biologically relevant translational model)

¹Rodino-Klapac et. al. Safety, β-Sarcoglycan Expression, and Functional Outcomes From Systemic Gene Transfer of rAAVrh74.MHCK7.hSGCB in LGMD2E/R4. Presented at the Muscular Dystrophy Association (MDA) Conference. Nashville, TN, March 13–16, 2022.

²Mendell et. al. A Phase 2 clinical trial evaluating the safety and efficacy of delandistrogene moxeparvovec (SRP-9001) in patients with Duchenne muscular dystrophy. Presented at the 2022 Muscular Dystrophy Association (MDA) Conference Nashville, TN, March 13–16, 2022. ³ van Opbergen et al., Circ Genom Precis Med, 2024; Feb;17(1):e004305. DOI: 10.1161/CIRCGEN.123.004305.

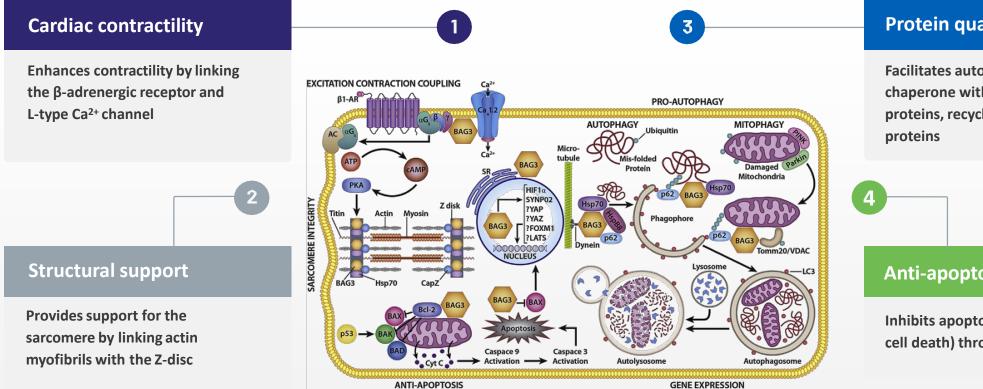
RP-A601: PKP2-ACM

Clinical Development Plan

Completed or Ongoing Activities

- ✓ Phase 1 Study Initiated
- ✓ Orphan Disease Designation
- GMP drug product manufacturing completed
- Pharmacology and GLP toxicology studies
- ✓ Potency assay
- Clinical protocol developed, vetted by Scientific Advisory Board and informed by patient insights
- ✓ Launching multi-center, clinical trial

High Level Phase 1 Trial Design


- Study design:
 - FIH, multi-center, dose escalation study to assess safety and preliminary efficacy
 - Starting dose of 8 x 10¹³ GC/kg
 - Target population: Adult PKP2-ACM patients with ICDs and high risk for arrhythmias
- Primary endpoint:
 - Safety events
- Secondary and exploratory endpoints:
 - PKP2 tissue protein expression
 - Clinical markers of life-threatening ventricular arrhythmias
 - Cardiac biomarkers

Natural History

 Natural history studies are planned to provide context for the Phase 1 trial and additional information on the progression of PKP2-ACM

BAG3 Regulates Critical Functions in Cardiomyocytes

Protein quality control

Facilitates autophagy as a cochaperone with heat shock proteins, recycling misfolded

Anti-apoptosis

Inhibits apoptosis (programmed cell death) through binding of BCL2

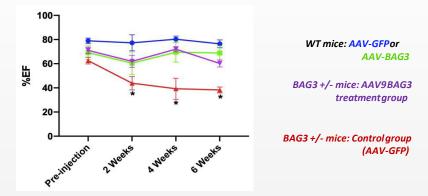
We believe that a gene therapy approach is best positioned to restore the broad biological functions of BAG3 in the heart

BAG3, BLC2-associated athanogene 3; BCL2, B-cell lymphoma 2.

Knezevic T, Myers VD, Su F, et al. Adeno-associated Virus Serotype 9 - Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts with Left Ventricular Dysfunction Secondary to a Myocardial Infarction, JACC Basic Transl Sci. 2016:1(7):647-656.

Myers VD, Gerhard GS, McNamara DM, et al. Association of Variants in BAG3 With Cardiomyopathy Outcomes in African American Individuals JAMA Cardiol. 2018;3(10):929-938.

BAG3-DCM Opportunity and Next Steps


BAG3-DCM Represents a Significant Market with Unmet Need

- Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy
- 20% to 50% of DCM patients have familial DCM; up to 40% of whom have an identifiable genetic cause⁽¹⁾
- Scientific societies recently endorsed clinical genetic testing for DCM patients and families^(2,3)
- Prevalence of BAG3 DCM in US is estimated to be as high as 30,000 patients⁽⁴⁾ and is expected to grow with increasing genetic testing and disease awareness

Initial Proof-of-Concept for AAV9-BAG3 Supports Further Development

 Initial proof of concept for AAV9-BAG3 demonstrated in BAG3-knockout mouse model

> Ejection fraction in WT and BAG3 +/- mice treated at age 6 to 8 weeks with AAV9-GFP or AAV9-BAG3

- Evaluating optimal development pathway
- IND planned for 2024

Cranbury R&D and Manufacturing Facility Overview

- Total Lab Space: ~30,000 sq. ft. for process development, analytical development, MS&T and QC
- Manufacturing capability from small-scale to toxicology-scale material
- Streamlined tech transfer timeline for pipeline assets from plasmid selection to IND in <15 months
- Manufacturing expansion to add media and buffer production capability
- Incorporating fully automated in-house vial filler suite
- Anticipated 2X capacity increase

Enables rapid, robust and cost-efficient internal development capability for new and existing programs in addition to full-scale commercial manufacturing

~100,000 ft² facility in Cranbury, NJ

40

FUTURE DIRECTIONS

Future Therapies: Wave 2 (AAV)

Focused R&D Strategy for **Sustainable Innovation**

First-, best- and/or only-in-class

On-target MOA; clear endpoints

Sizeable market to maximize patient impact

3 therapeutic areas (CV, heme and undisclosed)

We continue to build our pipeline based on our core R&D strategy, identifying the "most impactful" indications for the most efficient development path.

Expert Leadership With Proven Track Record

Gaurav Shah, M.D. Chief Executive Officer Spearheaded Kymriah (CART-19) development at Novartis towards approval

Memorial Sloan Kettering (♣) Memorial Sloan Cancer Center **U**NOVARTIS 📅 Brigham and Women's Hospital

Kinnari Patel, Pharm.D., MBA President, Head of R&D and **Chief Operating Officer** Led Opdivo and six rare disease indication approvals AstraZeneca Roche

H Bristol Myers Squibb U NOVARTIS

ImClone Systems

Jonathan Schwartz, M.D. Chief Medical & Gene Therapy Officer

Led multiple biologics approvals J NewYork-Presbyterian
□ Weill Cornell Medical Center Mount /// Sinai Lills

Aaron Ondrey Chief Financial Officer 20+ years of experience in commercial finance, strategic planning, and M&A across multiple therapeutic areas ALEXION MIRATI

REGENERON

Mayo Pujols **Chief Technical Officer** ~30 years technical operations and GMP manufacturing expertise

Θ

Mark White, MB.ChB. General Manager, Commercial Affairs

Seasoned drug developer with 25+ years of industry experience

Martin Wilson, J.D. General Counsel & Chief **Corporate Officer** ~20 years legal, compliance and executive experience and accomplishment in life sciences

Gayatri R. Rao, M.D., J.D. Chief Regulatory Officer & SVP, Clinical Safety 7-year former Director of FDA's Office of Orphan Products Development

FDA U.S. FOOD & DRUG SIDLEY

Raj Prabhakar, MBA Chief Business Officer ~20 years cell, gene and biotech business development

Carlos Martin, BA, MBA **Chief Commercial Operations** & Revenue Officer 15+ years global & local leadership, commercial strategy and new product launches

Isabel Carmona, J.D. **Chief People Officer** Seasoned leader in human resources, legal and compliance across life sciences, financial services and IT

THANK YOU!

