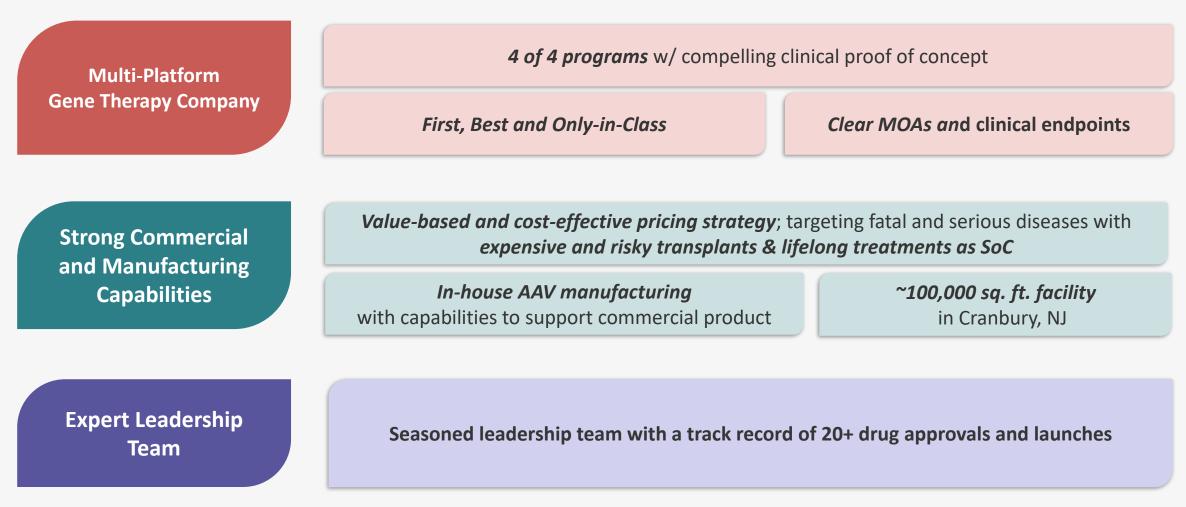
40th Annual J.P. Morgan Healthcare Conference Rocket Pharmaceuticals Company Presentation

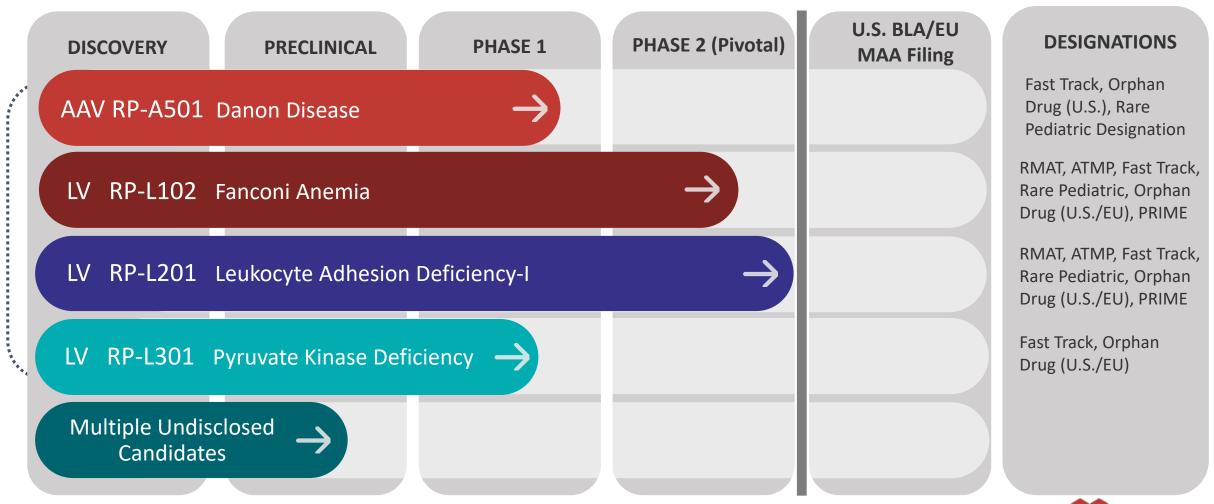
Gaurav Shah, MD Chief Executive Officer January 10, 2022

SEEKING GENE THERAPY CURES


NASDAQ: RCKT

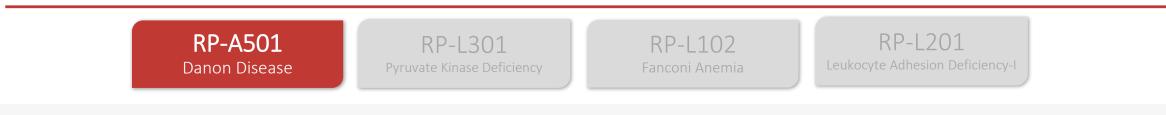
Cautionary Statement Regarding Forward-Looking Statements

Various statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding its guidance for 2022 in light of COVID-19, the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rocket's ongoing trials, our expectations regarding when clinical trial sites will resume normal business operations, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Annual Report on Form 10-K for the year ended December 31, 2020, filed March 1, 2021 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.



Rocket Pharma: Seeking Gene Therapy Cures

Our Multi-Platform Pipeline: Potential for Significant Value Creation Near and Long Term

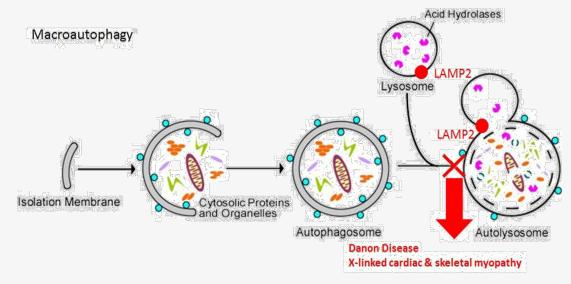


Note: IMO Program (RP-L401) to be returned to academic sponsors, human and financial resources to be reallocated to building Wave 2 and accelerating Wave 1

Danon Disease:

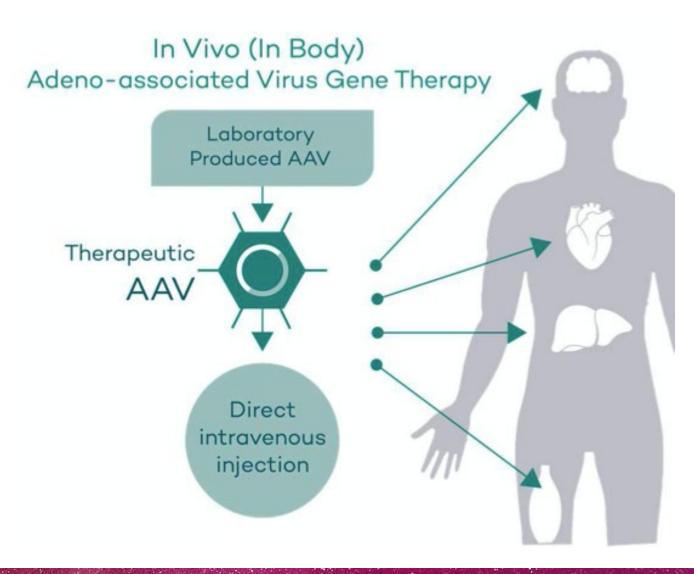
A Monogenic Heart Failure Syndrome

- **Background:** *Multisystemic disorder* caused by highly penetrant, X-linked dominant *LAMP2 mutations;* progressive cardiomyopathy is predominant cause of early mortality in young adults
 - Males: *aggressive* disease course, median OS is 19y
 - Females: *generally delayed* presentation due to additional X chromosome



Currently available treatments: Heart transplants associated with considerable morbidity and mortality (10y OS 50%) and available to ~20% of DD pts

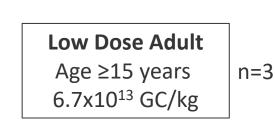
88


Addressable Market: Estimated US + Europe prevalence of 15,000-30,000

MECHANISM OF ACTION

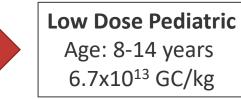
How Does rAAV Gene Therapy (RP-A501) Work in Danon Disease?

Intravenous Administration of rAAV


- AAV9 demonstrates tropism to:
 - Cardiomyocytes
 - Skeletal muscle
 - Brain tissue
- Non-dividing, terminally differentiated cardiomyocytes can be transduced
- rAAV9 DNA expresses LAMP2B gene
- Cardiomyocytes have minimal cell turnover; long-term durable expression anticipated

RP-A501 (Danon Disease): Phase 1 Patients Treated to Date

Non-Randomized Open Label Phase 1 Study (n= 7-9)


n=1

Patient ID	Age at Treatment (years)	Weight (kg)	Primary Prophylactic Immunosuppression Corticosteroids	
1001	17	52.2	Corticosteroids	
1002	20	89.1	Corticosteroids*	
1005	18	91.8	Corticosteroids*	

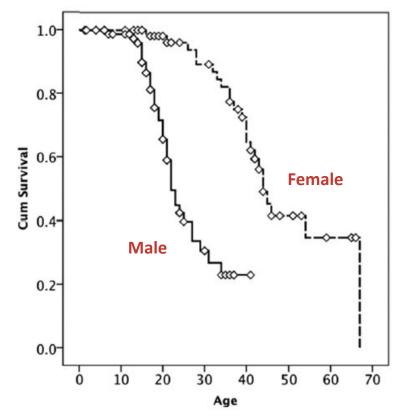
High Dose Adult	
Age ≥15 years	n=2
1.1x10 ¹⁴ GC/kg	

	Patient ID	Age at Treatment (years)	Weight (kg)	Primary Prophylactic Immunosuppression		
2	1006	21	82.7	Rituximab + Corticosteroids + Tacrolimus		
	1007	20	96.7	Rituximab + Corticosteroids + Tacrolimus		

Patient ID	Age at Treatment (years)	Weight (kg)	Primary Prophylactic Immunosuppression
1008	12	69.7	Rituximab + Corticosteroids + Sirolimus

* Received tacrolimus but after IP dose

1002: For only 5 days between Day 57 and 65 with subtherapeutic levels 1005: Started on Day 10

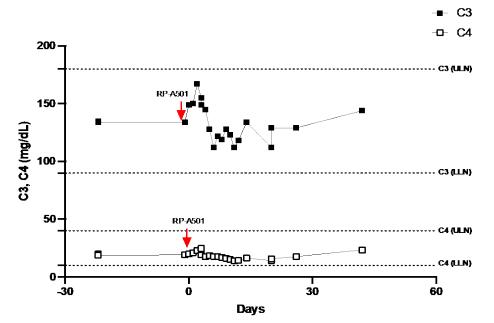


GC = Genome copies

RP-A501 (Danon Disease): Current Program Safety & Efficacy Data

- Safety data in initial pediatric patient suggests that modified immunosuppressive regimen has potential to mitigate AEs observed in adult low/high-dose cohorts
 - \circ Sirolimus/Rituximab (+ steroid) \rightarrow :
 - Minimal complement activation and $\downarrow \downarrow \downarrow$ potential for TMA
 - Early steroid taper; no exacerbation of DD-associated skeletal myopathy
- Efficacy in low-dose adult cohort evidenced by multiple clinical parameters in patients with closely monitored immunosuppressive regimen:
 - Improved ventricular wall thickness
 - Improved NYHA class
 - o ↓BNP
 - > 50% LAMP2B cardiac expression
 - Stable 6MWT
 - Stable cardiac function as measured by cardiac output / stroke volume and wedge pressure

Danon Disease Natural History


Boucek Genet Med. 2011

RP-A501 (Danon Disease): Pediatric Patient (1008) Safety Data Summary

Post-implementation of enhanced risk-management plan

- RP-A501 infusion was well tolerated
- No drug-related SAEs
- Mitigation of complement activation with stable platelets, Hgb and Cr
- Baseline myopathy (Grade 1) remained stable without exacerbation post-treatment
- Patient has been clinically stable; no signs/symptoms beyond pre-rx baseline
- Additional pediatric patient enrollment on track

RP-A501: Stabilization or Improvement of Cardiac Biomarkers and Functional Status Across Dose Levels

Cohort	Patient ID	Variable	Baseline	Most Recent Follow-up	Time of Follow-up
		NYHA class	Ш	Ш	
	1001*	BNP (pg/mL)	70	30	24 months
		6 MWT (meters)	443	467	
		NYHA class	Ш	I	18 months
Adult - Low Dose	1002	BNP (pg/mL)	942	200	
		6 MWT (meters)	405	410	
		NYHA class	Ш	I	
	1005	BNP (pg/mL)	176	44	15 months
		6 MWT (meters)	427	435	
		NYHA class	Ш	I	
Adult - High Dose	1006	BNP (pg/mL)	123	41	12 months
		6 MWT (meters)	436	492	

* Corticosteroid compliance not closely monitored in initial patient NYHA = New York Heart Association BNP = Brain Natriuretic Peptide 6MWT = 6-Minute Walk Test

RP-A501: Endomyocardial LAMP2B Protein Expression by Immunohistochemistry (IHC) and Western Blot

Cohort	Patient ID	LAMP2B Protein Expression (by IHC)**	LAMP2B Protein Expression (by Western Blot)
Conort	Month 12		Month 5-18
	1001*	2.5% (Previously <15%) ¹	17.9% ⁴
Adult – Low Dose	1002	67.8%	21.2% ⁵
	1005	92.4 % ²	61.1% ⁶
Adult –	1006	1006 100% 18	18.2% ⁴
High Dose	1007	100% ³	RV: 45.1% ⁷ LV: 44.0% ⁷

¹ Previously disclosed as a range due to high variance, now clarified

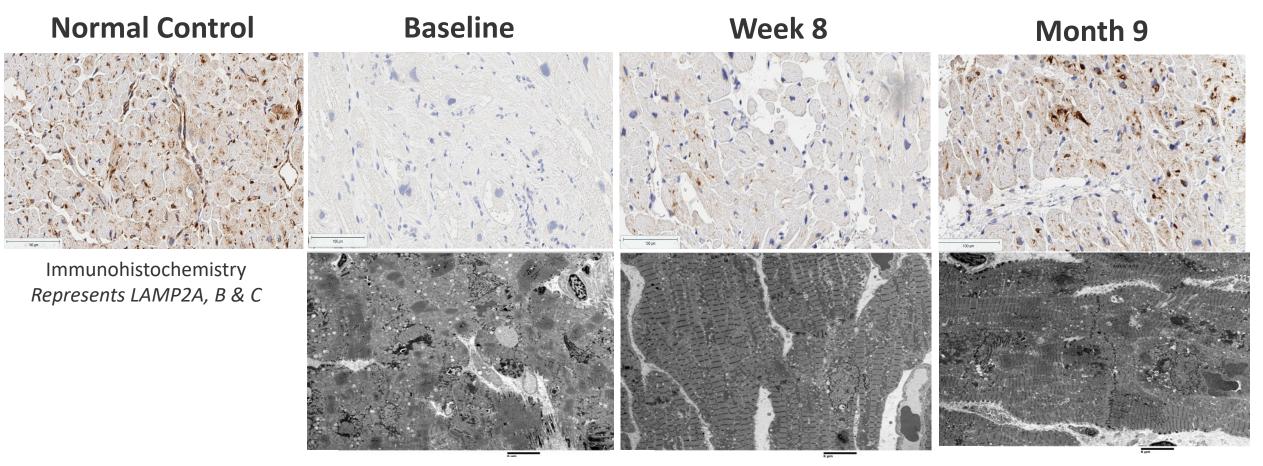
² Month 9 data

³ Explant sample at Month 5

⁴ Month 6 data; inadequate sample at Month 12

⁵ Month 18 data; inadequate sample at Month 12

⁶ Month 9 data


⁷ Explanted heart; Month 5 data

* Patient 1001 was only locally monitored for compliance for two weeks; longer compliance monitoring initiated after 1001

** Endomyocardial biopsies stained for LAMP2 compared to normal control samples. Percent area of cell staining was quantitated using software in a blinded fashion from 2 to 14 sections. Qualitative assessment reported for samples with high variance.

RP-A501 Low Dose: LAMP2 Protein Expression by Immunohistochemistry and Cell Morphology by Electron Microscopy

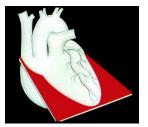
Electron Microscopy

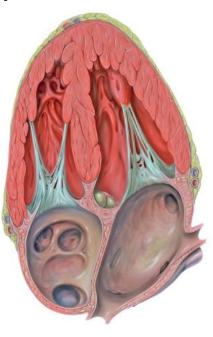
Danon Hypertrophic Cardiomyopathy Physiology and Endpoints

Increased Wall Thickness

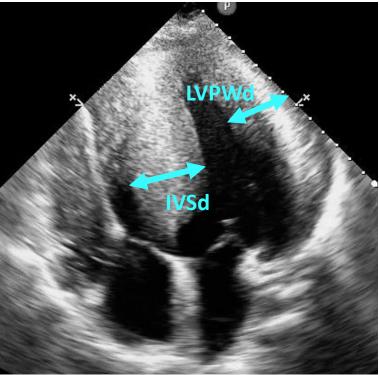
↑ LV posterior and septal wall thickness (Echo, cMRI)

Decreased Diastolic Relaxation

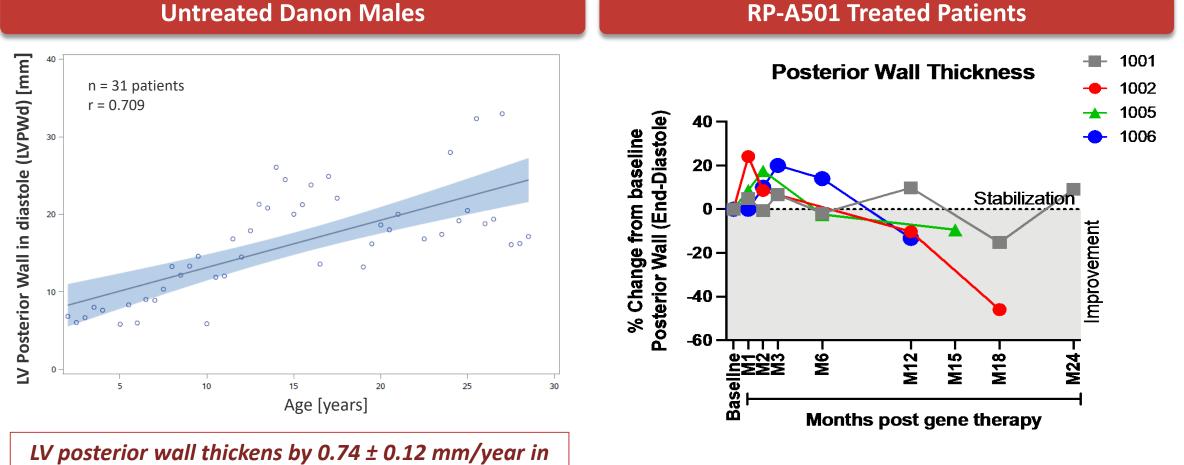

- ↑ Diastolic filling pressures
 ↑ Pulmonary wedge pressure
 (invasive hemodynamics at R heart cath)
- Preserved left ventricular ejection fraction
 [%] (Echo, cMRI)


RP-A501: Danon Patient's Heart Thickened on Echo

Normal LV RV RA ΙΔ

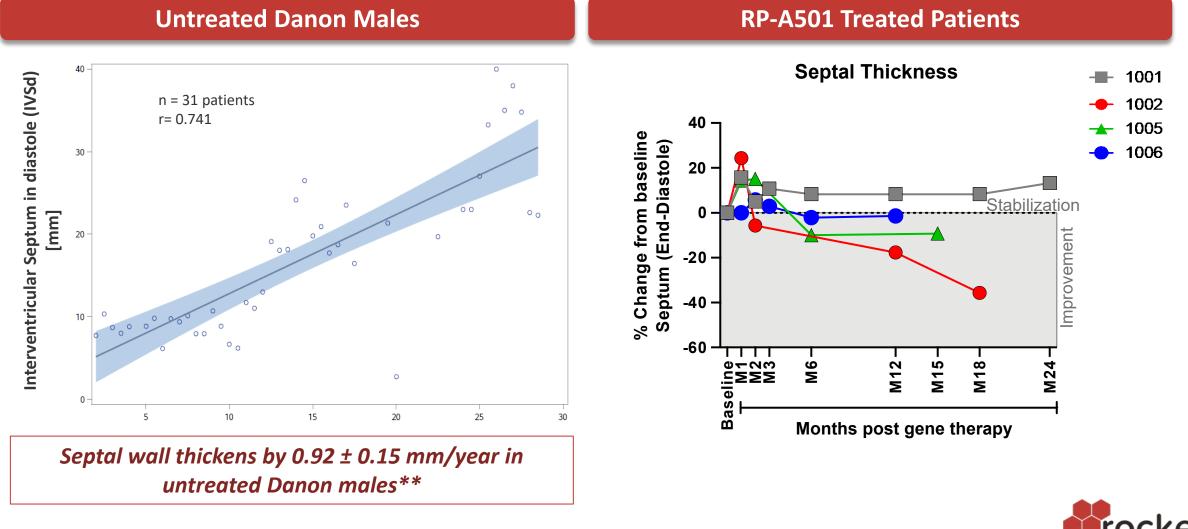


Apical 4-Chamber View


Danon Patient 1002

LVPWd: LVPW in diastole IVSd: IVS in diastole

RP-A501: Treated Patients* Show Trend Toward Improvements in LV Wall Thickness vs. Untreated** Danon Males


untreated Danon males**

* All echocardiographic parameters from local laboratory assessment; Posterior wall: LVPWd, Septal wall: IVS ** Unpublished data from International Danon Disease Registry *** Sutton et al. Br Heart J. 1982; 48: 342-51 Sluysman & Colan, 2009. Echo. in Ped. & Congenital Heart Disease

15

RP-A501: Treated Patients* Show Trend Toward Improvements in Septal Wall Thickness vs. Untreated** Danon Males

* All echocardiographic parameters from local laboratory assessment; Posterior wall: LVPWd, Septal wall: IVS

** Unpublished data from International Danon Disease Registry

*** Sutton et al. Br Heart J. 1982; 48: 342-51 Sluysman & Colan, 2009. Echo. in Ped. & Congenital Heart Disease

Danon-related Increases in Left Ventricular Posterior Wall Corroborated by Longitudinal Echo Results in Younger Patients *

- Male Danon disease patients evaluated over median 3.1 years (range: ~ 2.4 12.2 years)
- Age at initial evaluation median 8.6y (LVPWd) (range: ~ 5.7–12.0 years)

Echo Parameter	Ν	Increase	Median Rate of Increase (mm/year)
LVPWd	10	1.42	1.20

Rates of wall thickening identified on larger population-based analyses (previous slide) are likely to be comparable or increased when studied in individual patients, <u>including patients in the 8-14 y age range</u>.

 All echocardiographic parameters from local laboratory assessment; Posterior wall: LVPW Unpublished data from International Danon Disease Registry Rates estimated via interpolation

RP-A501: Gene Therapy Has Potential to Alter Natural History of Danon Disease Patients

Trajectory of cardiac pathophysiology and heart failure in male Danon disease patients

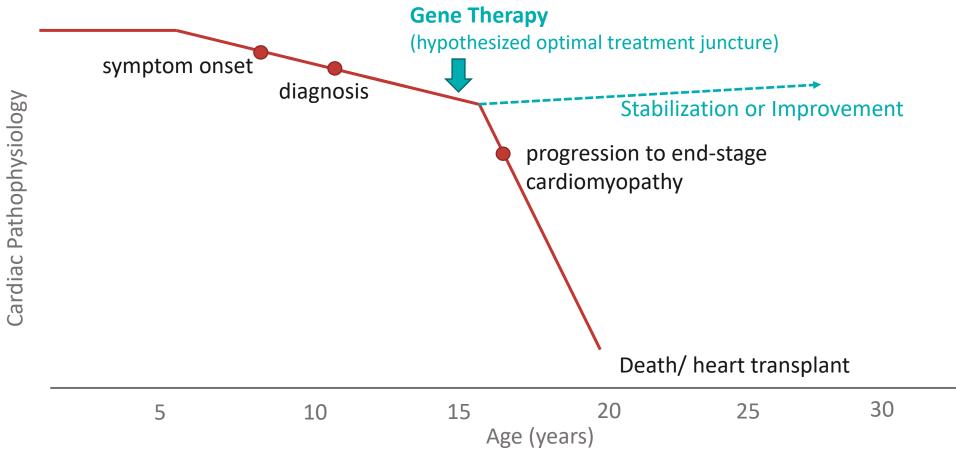


Figure modified from disease progression by age data in Boucek et al. Natural history of Danon disease. Genet Med. 2011 Jun;13(6):563-8, Brambatti et al. J Cardiac Failure. 2019. Aug;25(8):1-7, and Feingold et al. Am J Transplant. 2015 Nov;15(11):2978-85

RP-A501: Overview of Development Plan

- ✓ Adult High- and Low-dose cohorts completed
- ✓ First patient dosed in pediatric cohort
- Orphan Drug, Rare Pediatric & Fast Track designations in the US (Eligible for PRV)

- Completion of pediatric cohort dosing and follow-up
- **End of Phase I Regulatory meeting with FDA**
- □ Initiation of European study sites (for Phase II)
- Expanded natural history with additional longitudinal patient data in EU

Planned US & EU Registrational Phase II Study

Current Status

Planned Next Steps

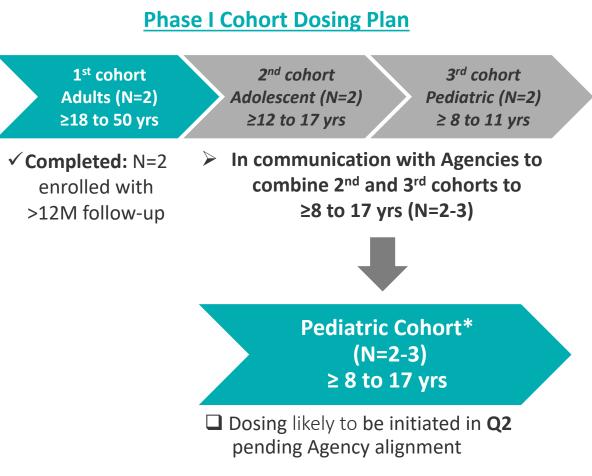
Additional Life-cycle Management Activities:

Potential label expansion to include female Danon patients

Pyruvate Kinase Deficiency (PKD): *A Monogenic Red Blood Cell Hemolytic Disorder*

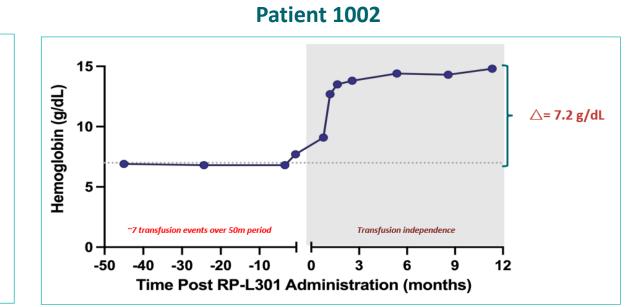
MECHANISM OF ACTION:

Current Available Treatments: Chronic blood transfusions and splenectomy—side effects include iron overload and extensive end-organ damage


- Addressable Market²: ~250-500 patients/year for transfusion-dependent post-splenectomy patients
 - Conservative estimates indicate a total number from 3,000 to 8,000 in the US, Europe and RoW combined
 - Largest LV program in Rocket's Wave 1 pipeline

¹One glucose molecule is metabolized into two Phosphoenolpyruvate and ultimately two Pyruvate (pyruvic acid) molecules; this final enzymatic step yields two additional ATPs from each glucose molecule

RP-L301 (PKD): Phase 1 Overview of Clinical Study Design


- Patients with *prior splenectomy* and *severe and/or transfusion-dependent anemia*
- Primary Endpoint: Safety and toxicity of RP-L301
- Secondary Endpoints:
 - o Clinically significant reduction of anemia
 - o Transfusion independence at 12- months
 - o 50% reduction in transfusion requirements
 - **PB and BM** genetic correction (VCN)
 - o Reduction of hemolysis

RP-L301 (PKD): Patients 1001 & 1002 Efficacy Results at 1 Year

Patient 1001

- Marked hemoglobin improvement (~7.4 g/dL to 13.3 g/dL) sustained at 12 months post-infusion
- No transfusion requirements following engraftment

- Hemoglobin normalized to 14.8 g/dL at ~12 months postinfusion
- No transfusion requirements following engraftment

Accompanied by sustained pVCN in 1-3 range and improvement of hemolysis markers

Note: Lab Values during mobilization/apheresis & post-conditioning period were not included Data as of December 2021

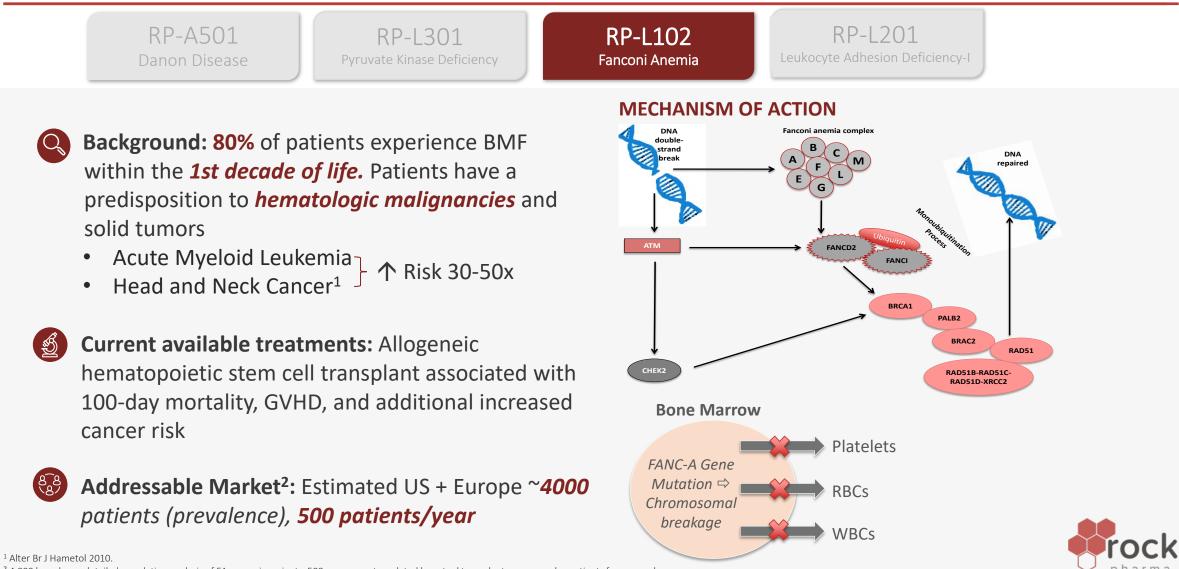
RP-L301 (PKD) Conclusion: Sustained Safety and Efficacy Observed in First 2 Patients at 1 Year

- Safety profile of RP-L301 *appears favorable* with no IP-related SAEs
- Preliminary efficacy sustained to date
 - Normalized Hgb and improving hemolysis markers
 - No red blood cell transfusion requirements post-engraftment
- Commercial-grade drug product and centralized testing for all treated patients

RP-L301 (PKD): Development Plan

PKD Study Progress to Phase II and Launch

- ✓ Key Endpoints selected
 - Hgb increase
 - $\sqrt{50\%}$ transfusions or transfusion independence
- $\checkmark\,$ Well delineated natural history in recent PKD NHS publications
- Complete Phase I pediatric cohort dosing (N=2-3)
- □ End of Phase I Regulatory meeting with FDA
- □ Approve & Launch RP-L301 seek regulatory approval in the U.S. and EU


Life-Cycle Management

Expansion study to pre-splenectomy patients anticipated in 2023

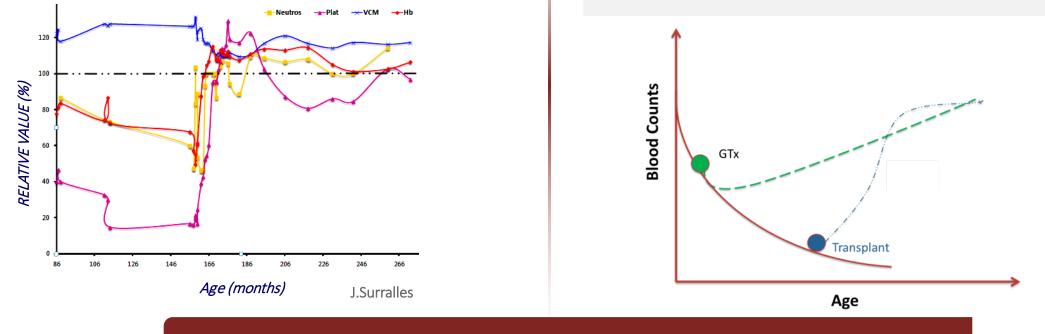
Exploration of non-genotoxic conditioning

Fanconi Anemia (FA): Monogenic DNA-repair disorder

² 4,000 based on a detailed population analysis of FA genomic variants. 500 per year extrapolated by actual transplants per year plus patients from prevalence

RP-L102 (FA): Clinical Program Overview

RP-L102 Studies	Non-random	nized, open label studies: US Phase 1, US Phase 2, and EU Phase 2 (FANCOLEN-II)			
CMC/Drug Product	"Process B" processing	includes cell enrichment, transduction enhancers, commercial-grade vector and modified cell			
Clinical Studies	✓ US Phase❑ US Phase	OLEN-I study (n=9) completed 1 study (n=2) completed at Stanford University 2 study ongoing at Stanford and Minnesota University 2 study ongoing at Hospital Infantil Universitario Niño Jesús and UCL/GOSH			
Endpoints	Efficacy	Engraftment : Peripheral blood (PB) and BM vector copy number (VCN) Phenotypic correction : Increased resistance of BM and PB cells to MMC and DEB Clinical response : Prevention of BMF			
	Primary Endr	<u>point</u> : Efficacy in at least patients (defined as >10% increase in MMC resistance at 2 time points observed between 12-36M post-rx) required to reject null hypothesis			
	Safety profile of RP-L102				


RP-L102 (FA): Potential to Correct Bone Marrow Defect Without Conditioning to Prevent Hematologic Failure

Rationale for GTx in FA Based on Somatic Mosaicism

- Small proportion of FA patients *spontaneously revert* to normal phenotype
- Proliferative advantage favors gene-corrected cells

Gene Therapy Value Proposition:

- Potential to *correct* blood & bone marrow defect *without conditioning*
- GTx implemented as preventative measure to *avert bone marrow failure*

Potential for single-corrected cell to repopulate to healthier bone marrow^{1,2}

pharma

¹ Soulier, J., et al. (2005) Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. *Blood* 105: 1329-1336; ²Data on file: Showing a single patient with a spontaneous correction of blood counts, no therapy administered.

RP-L102 (FA): Highly Favorable Safety and Initial Efficacy Observed

Safety Data

Safety results appear *highly favorable* and RP-L102 well positioned as *potential first-line treatment option**

- Patients treated <u>without conditioning</u>
- No signs of dysplasia
- Therapy does not preclude later allogeneic transplant

Efficacy Data

11 patients received RP-L102 7 of 9 show preliminary evidence of engraftment

N = 8 with $\geq 12M$ follow-up (12-32M)

To date, **6 of 8** show increasing evidence of engraftment with BM MMC resistance ranging from **16-63%** (at least one timepoint)

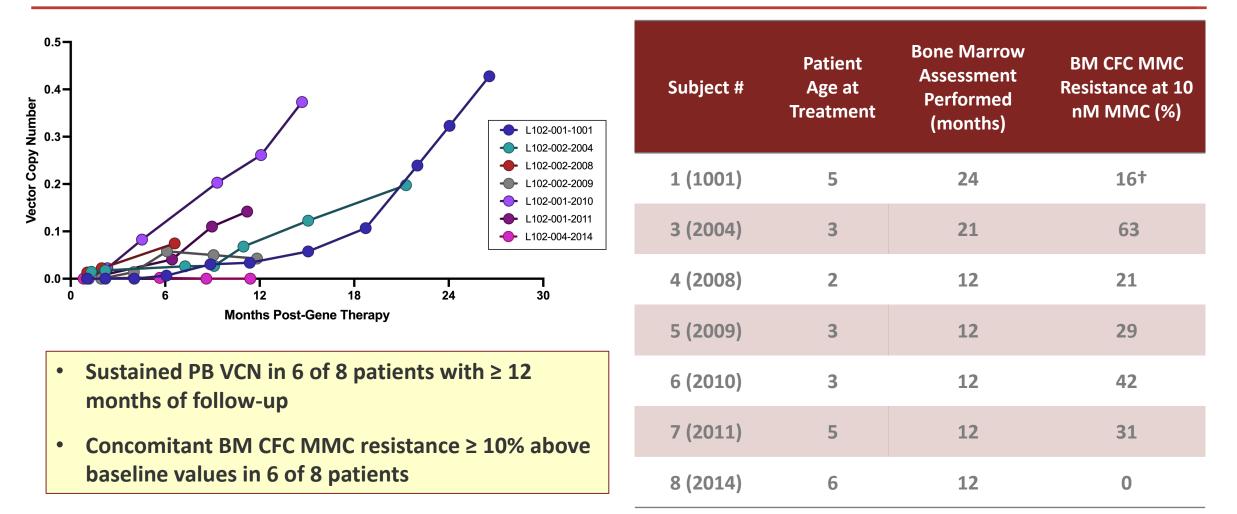
N = 3 with < 12M follow-up

Longer term data to follow

*In CIEMAT Previous FANCOLEN-I trial RP-L102 related SAEs: 1 transient infusion-related reaction (Grade 2)

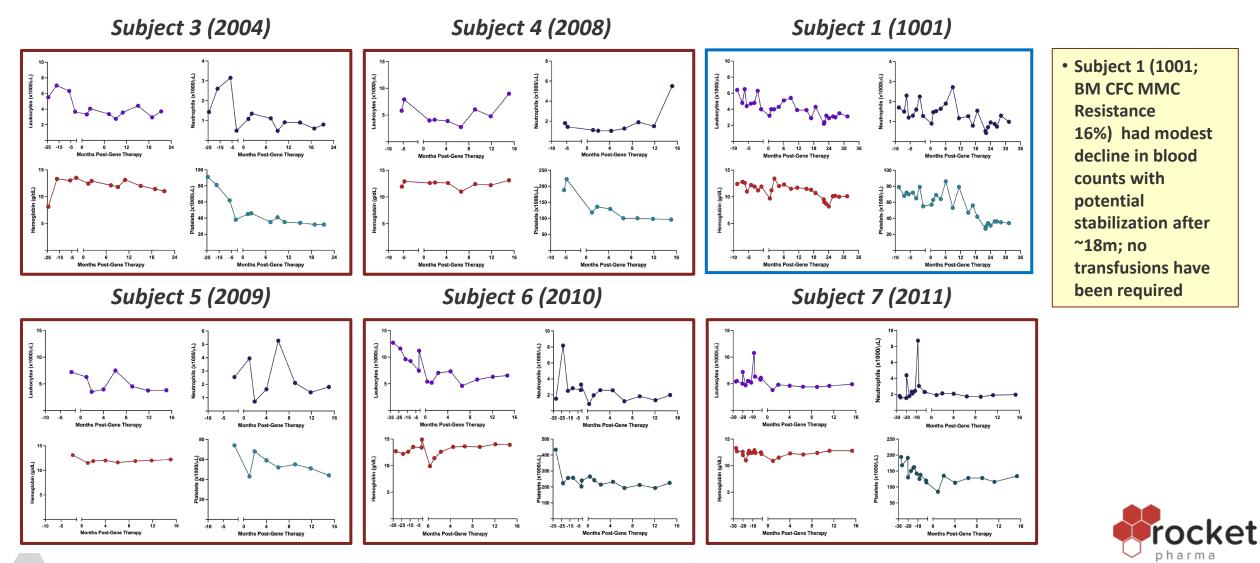
RP-L102 (FA): Treated Patients

			Age at	Key Drug Product Characteristics			
Phase	Subject #	Site	Enrollment	Gender	CD34+ Cells/kg	Mean VCN: Liquid Culture	Follow-up
H	1 (1001)	US	5	F	2.0 x 10 ⁵	2.08	32M
Н	2 (1002)*	US	6	F	3.7 x 10 ⁵	2.21	18M*
	3 (2004)	Spain	3	Μ	4.8 x 10 ⁵	1.70	21M
	4 (2008)	Spain	2	F	3.2 x 10 ⁶	1.65	15M
	5 (2009)	Spain	3	Μ	1.9 x 10 ⁶	2.16	15M
	6 (2010)	US	3	Μ	4.1 x 10 ⁶	0.62	15M
PH 2	7 (2011)	US	5	F	2.8 x 10 ⁶	1.46	15M
_	8 (2014)	UK	6	F	5.4 x 10 ⁵	3.68	12M
	9 (2016)	US	2	Μ	3.0 x 10 ⁵	1.96	9M
	10 (2021)	UK	2	F	2.3x 10 ⁶	pending	~2M [†]
	11 (2023)	UK	5	F	2.5x 10 ⁵	pending	0M ‡


* Subject withdrawn from the study at 18 months post-RP-L102 infusion; received successful allogeneic HSCT

† Subject recently received RP-L102 infusion as of October 2021

‡ Subject recently received RP-L102 infusion as of December 2021


RP-L102 (FA): Patients with ≥ 12M Follow-Up Demonstrate Evidence of Genetic and Phenotypic Correction

+ Assessment was not performed at study's centralized laboratories

RP-L102 (FA): Blood Count Stabilization in At Least 5 Patients

RP-L102 (FA): Path to Product Registration

Initial Efficacy and Highly Favorable Safety Profile:
 Initial efficacy in 6 of 8 patients with >12M follow-up
 No cytotoxic conditioning used, only one transient infusion-related SAE (Grade 2)

✓ Regulatory Designations:

➢Orphan Drug designation in the US/EU

Rare Pediatric Disease designation (eligible for PRV)
 Fast Track (US), Advanced Therapy Medicinal Product (ATMP)

Regenerative Medicine Advanced Therapy (RMAT), PRIority MEdicines (PRIME)

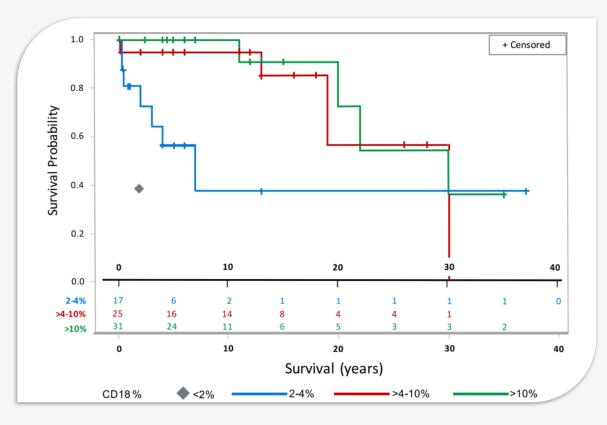
Topline Data Readout Anticipated 3Q-2022

Rejection of null hypothesis with minimum of 5 patients with increased MMC resistance >10% at two timepoints between 12-36M

Additional Life-cycle Management Activities:

- Expansion to FANC C & G
- Exploration of non-genotoxic conditioning and HSC expansion

Anticipated Simultaneous BLA / MAA Filing


Leukocyte Adhesion Deficiency-I (LAD-I): A *Monogenic Immunodeficiency*

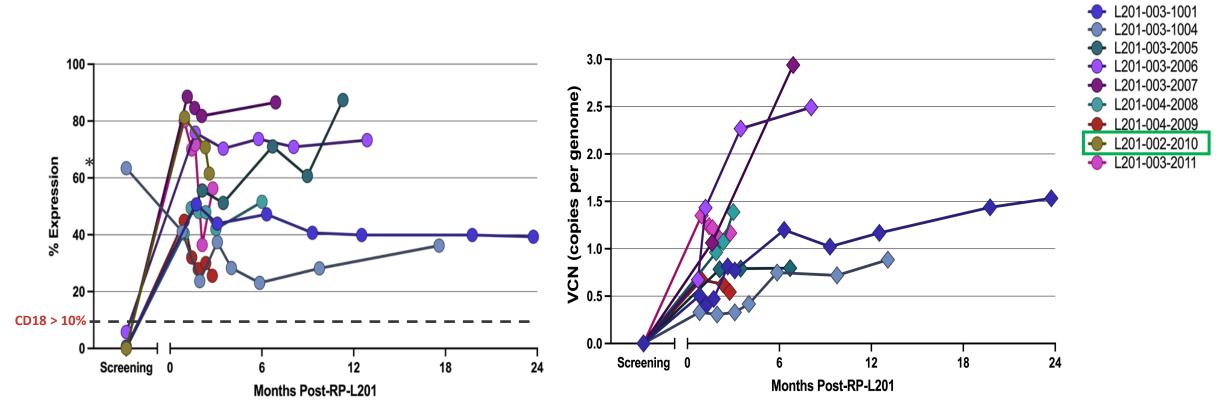
Rationale for Gene Therapy in LAD-I: CD18 Expression Correlates to Patient Survival

Kaplan-Meier Survival Estimates by Neutrophil CD18 Expression -Patients with moderate LAD-I not receiving allogeneic HSCT-

Natural history studies show the *correlation* between *higher CD18* expression and longer patient *survival*, supporting gene therapy's potential in LAD-I patients

CD18 > 10% results in survival of severe LAD-I patients for decades

The <u>grey diamond</u> indicates the 39% survival to age 2 years for 66 evaluable patients with severe LAD-I not receiving HSCT


Poster Presentation at ASGCT May 2018

Source: Almarza Novoa E et al. J Allergy Clin Immunol Pract. 2018 Jan 20. pii: S2213-2198(17)31026-7. [Epub ahead of print]

RP-L201 (LAD-I): Subject and Cell Product Characteristics

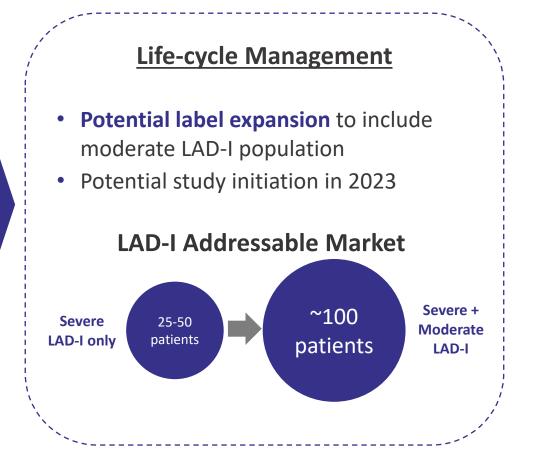
Patient ID	Gender	Age (enrollment)	Drug Product VCN	CD34+ Cell Dose
1 (1001)	F	9 yrs.	3.8	4.2 x 10 ⁶ cells/kg
2 (1004)	F	3 yrs.	2.5	2.8 x 10 ⁶ cells/kg
3 (2005)	F	3 yrs.	1.8	6.5 x 10 ⁶ cells/kg
4 (2006)	М	7 mo.	2.9	4.3 x 10 ⁶ cells/kg
5 (2007)	М	3 mo.	3.6	5.0 x 10 ⁶ cells/kg
6 (2008)	М	5 mo.	3.8	3.3 x 10 ⁶ cells/kg
7 (2009)	М	3 yrs.	2.0	4.5 x 10 ⁶ cells/kg
8 (2011)	F	2 yrs.	3.8	3.8 x 10 ⁶ cells/kg
9 (2010)	F	4 yrs.	3.5	10.0 x 10 ⁶ cells/kg

RP-L201 (LAD-I): CD18 & VCN Expression in PB Neutrophils

*Dim/weak CD18 expression reported at baseline for PT 1004 in ~60% of Cells

All 9 of 9 patients with CD18 > 10%

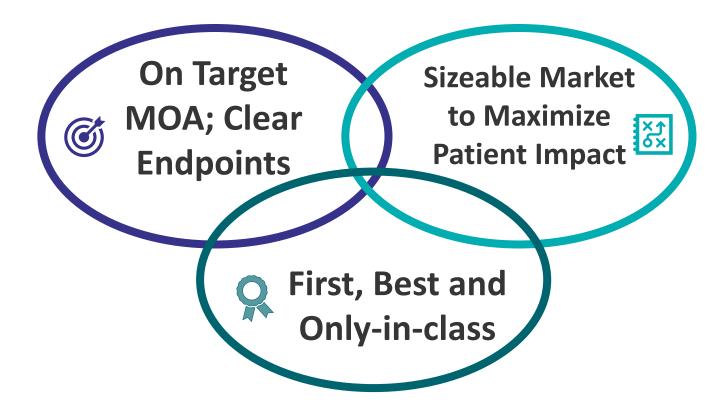
LAD has received CIRM Funding. Data as of December 2021


RP-L201 (LAD-I): Data Summary

- Phase 1/2 study complete: 9 of 9 severe LAD-I patients successfully treated
- Safety profile of RP-L201 appears favorable:
 - $\circ~$ No drug product-related SAEs
- Efficacy evident in all 9 severe LAD-I patients with follow-up of 3-24m
 - O Includes 4 patients with ≥ 12-months of follow-up; CD18+ PMN expression ranging from ~40% to ~87% at timepoints between 12-24 months
 - No LAD-I disease-related protracted hospitalizations for any of the 9 patients following RP-L201 gene therapy
- 100% engraftment and potentially curative CD18 reconstitution across all treated patients (achieved <34 days post-infusion)

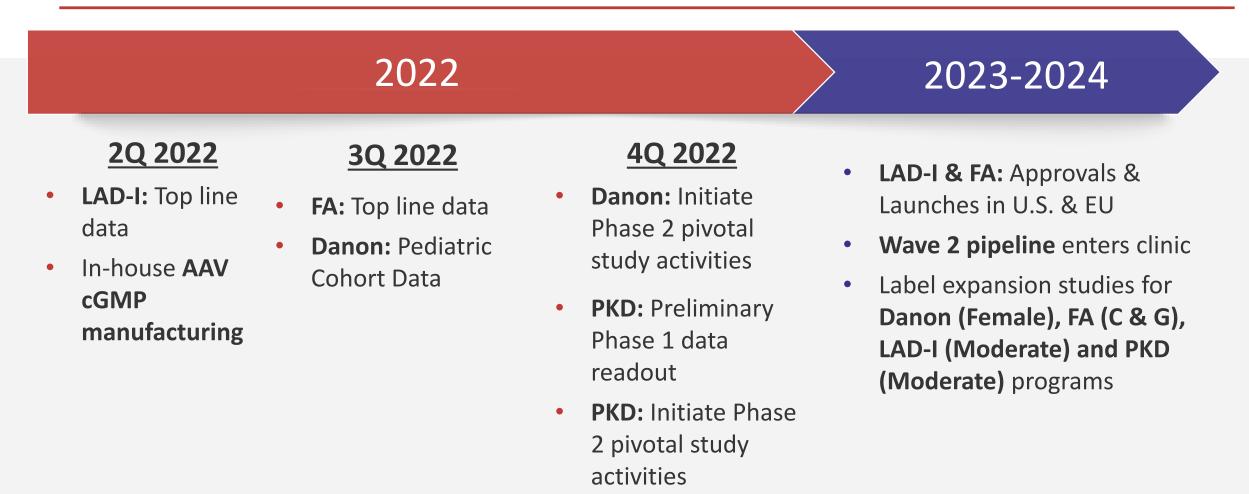
RP-L201 (LAD-I): Global Registrational Plan

- ✓ Enrollment Completed; 9 of 9 patients dosed
- Efficacy Seen in All 9 Patients with Minimum 3 Months Follow-Up
- Regulatory Designations:
 - Fast Track and Advanced Therapy Medicinal Product (ATMP)
 - Rare Pediatric Disease (eligible for PRV)
 - Orphan Drug designation in the U.S./EU
 - Regenerative Medicine Advanced Therapy (RMAT), PRIority MEdicines (PRIME)
- **D** Topline Data Readout Anticipated 2Q-2022
 - Survival at 12 months and to age >2 for 7 of 9 patients



BLA / MAA Filing

Replicating Core R&D Strategy for "Wave 2" Programs


We continue to build our pipeline based on our core R&D strategy; identify the "right" indications for the most efficient development path

Anticipated Program Milestones (2022 – 2024) *Our Path from Clinical to Commercial-Stage*

Rocket Values & Partnerships

