Lentiviral Mediated Gene Therapy for Pyruvate Kinase Deficiency: A Global Phase 1 Study for Adult and Pediatric Patients

José Luis López Lorenzo, MD1,2, Susana Navarro, PhD3,4, Ami J Shah, MD5,6,7, Maria Grazia Roncarolo, MD5,6,7, Julián Sevilla, MD, PhD8, Lucía Llanos, MD, PhD1,2, Begoña Pérez Camino de Gaisse, MD1,2, Sol Sanchez, MD1,2, Bertil Glader, MD, PhD7,9, May Chien, MD7,9, Oscar Quintana Bustamante, PhD2,3,4, Brian C Beard, PhD10, Kenneth M Law, PhD10, Miriam Zeini, PhD10, Grace Choi, BS10, Eileen Nicoletti, MD10, Juan A Bueren, PhD2,3,4, Gayatri Rao, MD, JD10, Jonathan D Schwartz, MD10 and José C Segovia, PhD2,3,4

1Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; 2Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; 4Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; 5Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA; 6Center for Definitive and Curative Medicine, Stanford University, Stanford, CA; 7Stanford Children’s Hospital, Palo Alto, CA; 8Hospital InfantilUniversitario Niño Jesús, Madrid, Spain; 9Department of Pediatrics, Division of Hematology/Oncology, Stanford University School of Medicine, Stanford, CA; 10Rocket Pharmaceuticals, Inc., New York, NY
Disclosures

• There are no relationships to disclose.
Introduction

- Pyruvate kinase disease (PKD) is a rare inherited hemolytic anemia caused by a mutation in the *PKLR* gene which results in decreased red cell pyruvate kinase (RPK) activity, impaired erythrocyte metabolism, and diminished red blood cell lifespan.

- PKD is characterized by anemia, reticulocytosis, hyperbilirubinemia, splenomegaly, and iron overload and may be life threatening in severely affected individuals.

PKD represents a significant unmet medical need

- There are up to 8,000 cases in EU and US.
- Currently available therapies are palliative and limited to chronic blood transfusions, iron chelation therapy, and splenectomy.
- Side effects of these treatments include increased infection susceptibility and thromboembolic risk.
- Therapies do not ameliorate PKD-related iron overload or end-organ damage.
- Allo-HSCT has been performed in select cases and resulted in transfusion independence; however, efficacy has been limited by toxicities and availability of a suitable donor.
Preclinical Studies Demonstrate Safety and Efficacy of Lentiviral-mediated Gene Therapy

- In vivo experiments were conducted using Lin⁻ BM cells from male PKD mice transduced with the therapeutic vector PGK-coRPK-WPRE and then transplanted into lethally irradiated female PKD mice.

PKD Murine Model:
- Hemolytic anemia
- Splenomegaly
- Histologic signs of hepatic extra-medullary erythropoiesis

PKD mice transplanted with gene-corrected cells demonstrated phenotypic correction:
- Significant increase in RBC count and half-life
- Decreased erythropoietin levels
- Normalized spleen and liver size & structure, with no evidence of erythroid clusters or iron deposits
- Improvement in red cell pyruvate kinase enzymatic pathway as assessed by metabolomic assays

Highly Favorable Safety Profile:
- No physical, behavioral biochemical, hematologic, or morphologic abnormalities observed in transplanted mice
- Limited evidence of PGK-coRPK-WPRE in nonhematopoietic organs, indicating very low risk of germline transmission
- No evidence of replication competent lentivirus (RCL)

Recombinant congenic AcB55 carrying a loss-of function mutation (269 T>A affecting exon 2 of PKLR gene)

Global Phase 1 PKD Gene Therapy Study

Clinical Sites:
Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
Stanford University, Palo Alto, California, United States
Hospital Infantil Universitario Niño Jesús, Madrid, Spain

Primary Endpoint
Evaluation of the safety and toxicity of RP-L301

Secondary Endpoints
- Peripheral blood (PB) and bone marrow (BM) genetic correction as demonstrated by vector copy number (VCN)
- Transfusion independence (when relevant) at 12 months
- Achievement of 50% reduction in transfusion requirements (when relevant) at 12 months
- Clinically significant reduction of anemia
- Reduction of hemolysis

Key Eligibility Criteria

Inclusion:
- PKD diagnosis with a confirmed PKLR mutation
- Age:
 - 1st cohort (N=2): ≥18 to 50 years
 - 2nd cohort (N=2): ≥12 to 17 years
 - 3rd cohort (N=2): ≥ 8 to 11 years
- Severe and/or transfusion-dependent anemia
- Adequate cardiac, pulmonary, renal, and hepatic function

Exclusion:
- Presence of another known cause of hemolysis
- Venous or arterial thromboembolic event in prior 12 months
- Severe iron overload
- Other significant medical condition

Evaluation of the safety and toxicity of RP-L301
- Peripheral blood (PB) and bone marrow (BM) genetic correction as demonstrated by vector copy number (VCN)
- Transfusion independence (when relevant) at 12 months
- Achievement of 50% reduction in transfusion requirements (when relevant) at 12 months
- Clinically significant reduction of anemia
- Reduction of hemolysis

Clinical Sites:
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Stanford University, Palo Alto, California, United States
- Hospital Infantil Universitario Niño Jesús, Madrid, Spain
Study Design

CD34+ cell mobilization protocol with G-CSF and plerixafor:

G-CSF and plerixafor are administered over a 6-day sequence with apheresis conducted on 2 consecutive days.

PB counts of at least 10 CD34+ cells/µL are required to initiate apheresis.

Schematic diagram of product manufacture and treatment:

Patients undergo HSC mobilization and collection, followed by CD34+ immunoselection and transduction. RP-L301 is infused subsequent to myeloablative busulfan conditioning.

(Target area under the curve: 73,125 ng/mL*hour over 4 days)
Subject Characteristics and Product Metrics

Subject Characteristics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (y) and Gender</th>
<th>PKD Mutation</th>
<th>Hemoglobin (g/dL)</th>
<th>Bilirubin (mg/dL)</th>
<th>Erythropoietin (mIU/mL)</th>
<th>Transfusion Requirement for 2 Years Prior to Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>L301-006-1001</td>
<td>31 F</td>
<td>c.721G>T c.1529G>A</td>
<td>7.4†</td>
<td>13.4 mg/dL</td>
<td>35.6 mIU/mL</td>
<td>~14 transfusion episodes</td>
</tr>
<tr>
<td>L301-001-1002*</td>
<td>47 M</td>
<td>c.703GGG>AGG c.1047A>AA c.1744CGG>AGG</td>
<td>7.0‡</td>
<td>7.4 mg/dL</td>
<td>57.2 mIU/mL</td>
<td>~5 transfusion episodes</td>
</tr>
</tbody>
</table>

Product Metrics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Nucleated Cells/kg</th>
<th>CD34+ Cells/kg</th>
<th>CFCs/kg</th>
<th>Mean VCN: Liquid Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>L301-006-1001</td>
<td>3.93 x 10^6</td>
<td>3.9 x 10^6</td>
<td>9.16 x 10^5</td>
<td>2.73</td>
</tr>
<tr>
<td>L301-001-1002*</td>
<td>2.42 x 10^6</td>
<td>2.4 x 10^6</td>
<td>3.38 x 10^5</td>
<td>2.08</td>
</tr>
</tbody>
</table>

* Infusion planned
† Average hemoglobin calculated over 2 years prior to study enrollment
‡ Average hemoglobin calculated over 2 years prior to study enrollment; subject has declined red blood cell transfusions
Preliminary Efficacy Results: L301-006-1001

- **Significant hemoglobin improvement**: ~7.4 g/dL to 14.3 g/dL
- **No transfusion requirements** following engraftment

At 1–3 months post RP-L301

- **Reticulocytes decreased**
- **Erythropoietin normalized**

VCN in PBMCs 1.55 and VCN in BMMCs 2.72 at 3 months post RP-L301

- **Bilirubin decreased from 13.4 mg/dL to 1.8 mg/dL**
- **Hepcidin increased from <4.0 ng/mL to 90.1 ng/mL**

Lab Values during mobilization/apheresis & post-conditioning period were not included
Preliminary Safety Results

Treatment-emergent Adverse Events (Grade 3 or higher) (N=1 subject)

<table>
<thead>
<tr>
<th>Event</th>
<th>Adverse Events Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Organ Class (NCI CTCAE v. 5.0)</td>
<td>Any 3 4</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>1 1 –</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Stomatitis</td>
<td>1 1 –</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>AST increased</td>
<td>1 1 –</td>
</tr>
<tr>
<td>ALT increased</td>
<td>1 1 –</td>
</tr>
<tr>
<td>Metabolism and nutrition</td>
<td></td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>1 – 1</td>
</tr>
</tbody>
</table>

➤ No RP-L301 related adverse events
➤ Subject L301-006-1001 achieved neutrophil engraftment on day +13

Adverse events considered related to mobilization/apheresis (N=2 subjects):
Grade 2 SAE (chest pain, dyspnea, and nausea) during apheresis collection. These events were considered related to hyperleukocytosis and the mobilizing agents. They resolved with supportive care and without sequelae. Other events included Grade 2 bone pain and Grade 3 leukocytosis.
Conclusions

- Hematopoietic stem and progenitor cell collection appears safe and feasible in the initial adult subjects with severe PKD
- Investigational product RP-L301 was successfully manufactured
 - Liquid culture VCN >2.0
- Safety profile of RP-L301 appears favorable
 - Infusion well tolerated in (N=1); no IP-related SAEs or AEs
 - Hematopoietic reconstitution in less than 2 weeks
- Preliminary efficacy evident during initial 3 months after RP-L301
 - Subject L301-006-1001 with peripheral blood VCN of 2.21 at 1-month, normalized hemoglobin and hemolysis markers (baseline Hb ~7.4; Hb 14.3 g/dL at 3 months post RP-L301)
- Second adult patient treatment is planned in the coming weeks

Additional investigation in adult, adolescent & pediatric patients with severe PKD is forthcoming
Acknowledgments

Disclosures: José Luis López Lorenzo, MD; None; Susana Navarro, PhD: Rocket Pharmaceuticals, Inc.; Current equity holder in publicly-traded company, Other: SN has licensed medicinal products and receives research funding and equity from Rocket Pharmaceuticals, Inc., Patents & Royalties and Research Funding; Ami J Shah, MD; None; Maria Grazia Roncarolo, MD; None; Julián Sevilla, MD, PhD: Rocket Pharmaceuticals, Inc.; Consultancy and current equity holder in publicly-traded company; Lucia Llanos, MD, PhD; None; Begoña Pérez Camino de Gaisse, MD; None; Sol Sanchez, MD; None; Bertil Glader, MD, PhD: Agios Pharmaceuticals, Inc.; Consultancy; May Chien, MD; None; Oscar Quintana Bustamante, PhD; None; Brian C. Beard, PhD: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Kenneth M. Law, PhD: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Miriam Zeini, PhD: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Grace Choi, BS: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Eileen Nicoletti, MD: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Juan A. Bueren, PhD: Rocket Pharmaceuticals, Inc.; Consultancy, Current equity holder in publicly-traded company, Other: Has licensed medicinal products and receives research funding and equity from this company, Patents & Royalties and Research Funding; Gayatri Rao, MD, JD: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Jonathan D. Schwartz, MD: Rocket Pharmaceuticals, Inc.; Current employment and current equity holder in publicly-traded company; Jose C Segovia, PhD: Rocket Pharmaceuticals, Inc.; Consultancy, Current equity holder in publicly-traded company, Other: Has licensed medicinal products and receives research funding and equity from this company, Patents & Royalties and Research Funding.